FAIR AI Models in High Energy Physics
- URL: http://arxiv.org/abs/2212.05081v3
- Date: Fri, 29 Dec 2023 14:40:26 GMT
- Title: FAIR AI Models in High Energy Physics
- Authors: Javier Duarte and Haoyang Li and Avik Roy and Ruike Zhu and E. A.
Huerta and Daniel Diaz and Philip Harris and Raghav Kansal and Daniel S. Katz
and Ishaan H. Kavoori and Volodymyr V. Kindratenko and Farouk Mokhtar and
Mark S. Neubauer and Sang Eon Park and Melissa Quinnan and Roger Rusack and
Zhizhen Zhao
- Abstract summary: We propose a practical definition of FAIR principles for AI models in experimental high energy physics.
We describe a template for the application of these principles.
We report on the robustness of this FAIR AI model, its portability across hardware architectures and software frameworks, and its interpretability.
- Score: 16.744801048170732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The findable, accessible, interoperable, and reusable (FAIR) data principles
provide a framework for examining, evaluating, and improving how data is shared
to facilitate scientific discovery. Generalizing these principles to research
software and other digital products is an active area of research. Machine
learning (ML) models -- algorithms that have been trained on data without being
explicitly programmed -- and more generally, artificial intelligence (AI)
models, are an important target for this because of the ever-increasing pace
with which AI is transforming scientific domains, such as experimental high
energy physics (HEP). In this paper, we propose a practical definition of FAIR
principles for AI models in HEP and describe a template for the application of
these principles. We demonstrate the template's use with an example AI model
applied to HEP, in which a graph neural network is used to identify Higgs
bosons decaying to two bottom quarks. We report on the robustness of this FAIR
AI model, its portability across hardware architectures and software
frameworks, and its interpretability.
Related papers
- AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Can Kans (re)discover predictive models for Direct-Drive Laser Fusion? [11.261403205522694]
The domain of laser fusion presents a unique and challenging predictive modeling application landscape for machine learning methods.
Data-driven approaches have been successful in the past for achieving desired generalization ability and model interpretation that aligns with physics expectations.
In this work, we present the use of Kolmogorov-Arnold Networks (KANs) as an alternative to PIL for developing a new type of data-driven predictive model.
arXiv Detail & Related papers (2024-09-13T13:48:06Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - A Comprehensive Performance Study of Large Language Models on Novel AI
Accelerators [2.88634411143577]
Large language models (LLMs) are being considered as a promising approach to address some of the challenging problems.
Specialized AI accelerator hardware systems have recently become available for accelerating AI applications.
arXiv Detail & Related papers (2023-10-06T21:55:57Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - FAIR principles for AI models, with a practical application for
accelerated high energy diffraction microscopy [1.9270896986812693]
We showcase how to create and share FAIR data and AI models within a unified computational framework.
We describe how this domain-agnostic computational framework may be harnessed to enable autonomous AI-driven discovery.
arXiv Detail & Related papers (2022-07-01T18:11:12Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - A Model-Driven Engineering Approach to Machine Learning and Software
Modeling [0.5156484100374059]
Models are used in both the Software Engineering (SE) and the Artificial Intelligence (AI) communities.
The main focus is on the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS) use cases, where both ML and model-driven SE play a key role.
arXiv Detail & Related papers (2021-07-06T15:50:50Z) - Complete CVDL Methodology for Investigating Hydrodynamic Instabilities [0.49873153106566565]
In fluid dynamics, one of the most important research fields is hydrodynamic instabilities and their evolution in different flow regimes.
Currently, three main methods are used for understanding such phenomenon - namely analytical models, experiments and simulations.
We claim and demonstrate that a major portion of this research effort could and should be analysed using recent breakthrough advancements in the field of Computer Vision with Deep Learning (CVDL, or Deep Computer-Vision)
Specifically, we focus in this research on one of the most representative instabilities, the Rayleigh-Taylor one, simulate its behaviour and create an open-sourced state-of-the
arXiv Detail & Related papers (2020-04-03T13:52:04Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.