論文の概要: Exploring Singularities in point clouds with the graph Laplacian: An explicit approach
- arxiv url: http://arxiv.org/abs/2301.00201v2
- Date: Mon, 21 Oct 2024 06:06:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:14:21.472009
- Title: Exploring Singularities in point clouds with the graph Laplacian: An explicit approach
- Title(参考訳): グラフラプラシアンによる点雲における特異点探索--明示的アプローチ
- Authors: Martin Andersson, Benny Avelin,
- Abstract要約: グラフラプラシアンを用いて、基礎となるデータセットの多様体の幾何学を解析する理論と手法を開発する。
我々の理論は、基礎多様体の特異点に近く定義された函数に作用するとき、グラフラプラシアンの函数形式に関する理論的な保証と明示的な境界を与える。
- 参考スコア(独自算出の注目度): 1.9981375888949477
- License:
- Abstract: We develop theory and methods that use the graph Laplacian to analyze the geometry of the underlying manifold of datasets. Our theory provides theoretical guarantees and explicit bounds on the functional forms of the graph Laplacian when it acts on functions defined close to singularities of the underlying manifold. We use these explicit bounds to develop tests for singularities and propose methods that can be used to estimate geometric properties of singularities in the datasets.
- Abstract(参考訳): グラフラプラシアンを用いて、基礎となるデータセットの多様体の幾何学を解析する理論と手法を開発する。
我々の理論は、基礎多様体の特異点に近く定義された函数に作用するとき、グラフラプラシアンの函数形式に関する理論的な保証と明示的な境界を与える。
これらの明示的な境界を用いて特異点のテストを開発し、データセット内の特異点の幾何学的性質を推定する手法を提案する。
関連論文リスト
- Geometry of Lightning Self-Attention: Identifiability and Dimension [2.9816332334719773]
任意の層数に対するパラメトリゼーションの一般的な繊維の表現を提供することにより、深い注意の識別可能性について検討する。
単層モデルでは特異点と境界点を特徴付ける。
最後に,本研究の結果を正規化された自己注意ネットワークに拡張し,単一層として証明し,深部ケースで数値的に検証する。
論文 参考訳(メタデータ) (2024-08-30T12:00:36Z) - (Deep) Generative Geodesics [57.635187092922976]
2つのデータポイント間の類似性を評価するために,新しい測定基準を導入する。
我々の計量は、生成距離と生成測地学の概念的定義に繋がる。
彼らの近似は、穏やかな条件下で真の値に収束することが証明されている。
論文 参考訳(メタデータ) (2024-07-15T21:14:02Z) - Finite-dimensional approximations of push-forwards on locally analytic functionals [5.787117733071417]
我々のアプローチは、解析写像そのものを直接扱うのではなく、局所解析関数の空間上のプッシュフォワードを考えることである。
有限離散データからプッシュフォワードの適切な有限次元近似を可能にする手法を確立する。
論文 参考訳(メタデータ) (2024-04-16T17:53:59Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
フービニ・スタディ計量に基づく絡み合い尺度は、Cocchiarellaと同僚によって最近導入された。
本稿では,多モードガウス状態に対する幾何絡み合いの一般化であるガウスエンタングルメント尺度(GEM)を提案する。
自由度の高い系に対する計算可能な多部絡み合わせ測度を提供することにより、自由なボゾン場理論の洞察を得るために、我々の定義が利用できることを示す。
論文 参考訳(メタデータ) (2024-01-31T15:50:50Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - From axioms over graphs to vectors, and back again: evaluating the
properties of graph-based ontology embeddings [78.217418197549]
埋め込みを生成するアプローチの1つは、名前付きエンティティと論理公理構造のためのノードとエッジのセットを導入することである。
グラフに埋め込む方法(グラフ射影)は、それらが利用する公理の種類と異なる性質を持つ。
論文 参考訳(メタデータ) (2023-03-29T08:21:49Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
トレーニングセットがわずか数個のデータポイントから構成されるデータ分類の問題を考える。
我々は、AIモデルの特徴空間の幾何学、基礎となるデータ分布の構造、モデルの一般化能力との間の重要な関係を明らかにする。
論文 参考訳(メタデータ) (2022-11-07T14:52:58Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
ディープニューラルネットワークは、音声認識、機械翻訳、画像解析など、いくつかの科学領域で複雑な問題を解決するために広く使われている。
我々は、リーマン計量を備えた列の最後の多様体で、多様体間の写像の特定の列を研究する。
このようなシーケンスのマップの理論的性質について検討し、最終的に実践的な関心を持つニューラルネットワークの実装間のマップのケースに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-17T11:43:30Z) - Manifold learning with arbitrary norms [8.433233101044197]
本研究では,アースモーバー距離に基づく多様体学習が,分子形状空間を学習する標準的なユークリッド変種よりも優れていることを示す。
数値シミュレーションにより,アースモーバー距離に基づく多様体学習は,分子形状空間を学習するための標準ユークリッド変種よりも優れていることを示した。
論文 参考訳(メタデータ) (2020-12-28T10:24:30Z) - Geometric Formulation for Discrete Points and its Applications [0.0]
離散点上の幾何学の新しい定式化を導入する。
これは普遍微分計算に基づいており、関数の代数による離散集合の幾何学的記述を与える。
論文 参考訳(メタデータ) (2020-02-07T01:12:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。