論文の概要: Complete Neural Networks for Complete Euclidean Graphs
- arxiv url: http://arxiv.org/abs/2301.13821v3
- Date: Thu, 28 Mar 2024 18:45:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 21:06:09.758136
- Title: Complete Neural Networks for Complete Euclidean Graphs
- Title(参考訳): 完全ユークリッドグラフのための完全ニューラルネットワーク
- Authors: Snir Hordan, Tal Amir, Steven J. Gortler, Nadav Dym,
- Abstract要約: 点雲の集中型グラム行列に3WLグラフ同型テストを適用することにより、点雲を完全に決定できることを示す。
次に、中程度の大きさのユークリッドグラフニューラルネットワークによって、我々の完全なユークリッドテストがどのようにシミュレートされるかを示し、その分離能力を高度に対称な点雲上で実証する。
- 参考スコア(独自算出の注目度): 4.416503115535553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks for point clouds, which respect their natural invariance to permutation and rigid motion, have enjoyed recent success in modeling geometric phenomena, from molecular dynamics to recommender systems. Yet, to date, no model with polynomial complexity is known to be complete, that is, able to distinguish between any pair of non-isomorphic point clouds. We fill this theoretical gap by showing that point clouds can be completely determined, up to permutation and rigid motion, by applying the 3-WL graph isomorphism test to the point cloud's centralized Gram matrix. Moreover, we formulate an Euclidean variant of the 2-WL test and show that it is also sufficient to achieve completeness. We then show how our complete Euclidean WL tests can be simulated by an Euclidean graph neural network of moderate size and demonstrate their separation capability on highly symmetrical point clouds.
- Abstract(参考訳): 点雲のニューラルネットワークは、置換や剛体運動に対する自然な不変性を尊重しており、分子動力学からレコメンデーターシステムまで幾何学現象のモデリングに成功している。
しかし、今のところ、多項式複雑性を持つモデルは完備であることが知られておらず、すなわち、任意の非同型点雲の対を区別することができる。
この理論的ギャップを、点雲の集中的なグラム行列に3WLグラフ同型テストを適用することにより、点雲が置換や剛体運動まで完全に決定可能であることを示すことによって埋める。
さらに、2-WLテストのユークリッド多様体を定式化し、完全性を達成するのに十分であることを示す。
次に、ユークリッドのWLテストが適度な大きさのユークリッドグラフニューラルネットワークによってどのようにシミュレートされるかを示し、その分離能力を高対称性の点雲上で実証する。
関連論文リスト
- Bridging Domain Gap of Point Cloud Representations via Self-Supervised Geometric Augmentation [15.881442863961531]
領域間の点雲表現の幾何学的不変性を誘導する新しいスキームを提案する。
一方、点雲のセントロイドシフトを軽減するために、拡張サンプルの距離の変換を予測するための新しいプレテキストタスクが提案されている。
一方,我々は幾何学的に拡張された点雲上での自己教師付き関係学習の統合を開拓した。
論文 参考訳(メタデータ) (2024-09-11T02:39:19Z) - Neural varifolds: an aggregate representation for quantifying the geometry of point clouds [2.2474167740753557]
本稿では,新しい表面形状特徴化,すなわち点雲のニューラルバリアフォールド表現を提案する。
変数表現は、多様体に基づく判別を通じて点雲の表面幾何学を定量化する。
提案したニューラルバリアフォールドは, 形状マッチング, 少数ショット形状分類, 形状再構成の3つの異なるタスクで評価される。
論文 参考訳(メタデータ) (2024-07-05T20:08:16Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
我々は幾何学と属性の両方を扱える先駆的なクラウド圧縮フレームワークを提案する。
本フレームワークでは,2つの座標ベースニューラルネットワークを用いて,voxelized point cloudを暗黙的に表現する。
本手法は,既存の学習手法と比較して,高い普遍性を示す。
論文 参考訳(メタデータ) (2024-05-19T09:19:40Z) - On the Completeness of Invariant Geometric Deep Learning Models [22.43250261702209]
不変モデルは、点雲における情報的幾何学的特徴を利用して意味のある幾何学的表現を生成することができる。
最も単純なグラフグラフニューラルネットワーク(サブグラフGNN)の幾何学的対応であるGeoNGNNは、これらのコーナーケースの対称性を効果的に破ることができることを示す。
理論ツールとしてGeoNGNNを活用することで、1)従来のグラフ学習で開発されたほとんどのグラフGNNは、E(3)完全性を持つ幾何学的シナリオにシームレスに拡張できる。
論文 参考訳(メタデータ) (2024-02-07T13:32:53Z) - Weisfeiler Leman for Euclidean Equivariant Machine Learning [3.0222726571099665]
PPGNは, 複雑度が低い全点クラウド上で, 均一に2$-WLをシミュレートできることを示す。
第二に、2ドルのWLテストは、位置と速度の両方を含む点雲まで拡張可能であることを示す。
論文 参考訳(メタデータ) (2024-02-04T13:25:18Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Efficient Graph Field Integrators Meet Point Clouds [59.27295475120132]
点雲を符号化するグラフ上での効率的な場積分のためのアルゴリズムを2種類提案する。
第1のクラスであるSeparatorFactorization(SF)は、ポイントメッシュグラフの有界属を利用するが、第2のクラスであるRFDiffusion(RFD)は、ポイントクラウドの一般的なepsilon-nearest-neighborグラフ表現を使用する。
論文 参考訳(メタデータ) (2023-02-02T08:33:36Z) - Convolutional Neural Networks on Manifolds: From Graphs and Back [122.06927400759021]
本稿では,多様体畳み込みフィルタと点次非線形性からなる多様体ニューラルネットワーク(MNN)を提案する。
要約すると、我々は大きなグラフの極限として多様体モデルに焦点を合わせ、MNNを構築するが、それでもMNNの離散化によってグラフニューラルネットワークを復活させることができる。
論文 参考訳(メタデータ) (2022-10-01T21:17:39Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
本稿では,点雲上での新しい差分畳み込み探索パラダイムを提案する。
純粋にデータ駆動型であり、幾何学的形状モデリングに適した畳み込みのグループを自動生成することができる。
また,内部畳み込みと外部アーキテクチャの同時探索のための共同最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-29T14:42:03Z) - Permutation Matters: Anisotropic Convolutional Layer for Learning on
Point Clouds [145.79324955896845]
本稿では,各点のソフトな置換行列を計算する変分異方性畳み込み演算(PAI-Conv)を提案する。
点雲の実験により、PAI-Convは分類とセマンティックセグメンテーションのタスクにおいて競合する結果をもたらすことが示された。
論文 参考訳(メタデータ) (2020-05-27T02:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。