論文の概要: Out of Context: Investigating the Bias and Fairness Concerns of
"Artificial Intelligence as a Service"
- arxiv url: http://arxiv.org/abs/2302.01448v1
- Date: Thu, 2 Feb 2023 22:32:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-06 18:08:55.867917
- Title: Out of Context: Investigating the Bias and Fairness Concerns of
"Artificial Intelligence as a Service"
- Title(参考訳): 文脈外:「サービスとしての人工的知性」のバイアスと公平性に関する調査
- Authors: Kornel Lewicki, Michelle Seng Ah Lee, Jennifer Cobbe, Jatinder Singh
- Abstract要約: AI as a Service(AI as a Service)は、様々なプラグイン・アンド・プレイAIサービスやツールを提供する、急速に成長している市場です。
しかし、AIシステムは社会的影響を持つバイアスや不平等をカプセル化できることが知られている。
フェアネスの文脈に敏感な性質は、しばしばAIの「ワンサイズフィットオール」アプローチと相容れない。
- 参考スコア(独自算出の注目度): 6.824692201913679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: "AI as a Service" (AIaaS) is a rapidly growing market, offering various
plug-and-play AI services and tools. AIaaS enables its customers (users) - who
may lack the expertise, data, and/or resources to develop their own systems -
to easily build and integrate AI capabilities into their applications. Yet, it
is known that AI systems can encapsulate biases and inequalities that can have
societal impact. This paper argues that the context-sensitive nature of
fairness is often incompatible with AIaaS' 'one-size-fits-all' approach,
leading to issues and tensions. Specifically, we review and systematise the
AIaaS space by proposing a taxonomy of AI services based on the levels of
autonomy afforded to the user. We then critically examine the different
categories of AIaaS, outlining how these services can lead to biases or be
otherwise harmful in the context of end-user applications. In doing so, we seek
to draw research attention to the challenges of this emerging area.
- Abstract(参考訳): AI as a Service"(AIaaS)は急速に成長している市場であり、様々なプラグイン・アンド・プレイのAIサービスやツールを提供している。
AIaaSは、専門知識やデータ、リソースを欠いている顧客(ユーザ)に対して、AI機能をアプリケーションに簡単に構築し統合するための独自のシステムを開発することを可能にする。
しかし、AIシステムは社会的影響を持つバイアスや不平等をカプセル化できることが知られている。
本稿では、公正さの文脈に敏感な性質は、しばしばAIaaSの「一大フィット」アプローチと相容れないため、問題や緊張につながると論じる。
具体的には,AIサービスの分類を,ユーザに与えられる自律性レベルに基づいて提案することにより,AIaaS分野を見直し,体系化する。
次に、AIaaSの異なるカテゴリを批判的に検討し、これらのサービスがどのようにバイアスにつながるか、あるいはエンドユーザアプリケーションのコンテキストで有害かを説明します。
そのために私たちは、この新興分野の課題に研究の注意を向けようとしている。
関連論文リスト
- The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination [1.4305544869388402]
知識グラフ(KG)は、インテリジェントな意思決定を支えるための基盤として登場した。
KGと神経学習の統合は、現在活発な研究のトピックである。
本稿では,KGベースのAIによる自己決定を支援するための基礎的なトピックと研究の柱を概念化する。
論文 参考訳(メタデータ) (2023-10-30T12:51:52Z) - General Purpose Artificial Intelligence Systems (GPAIS): Properties,
Definition, Taxonomy, Societal Implications and Responsible Governance [16.030931070783637]
汎用人工知能システム(GPAIS)は、これらのAIシステムを指すものとして定義されている。
これまで、人工知能の可能性は、まるで人間であるかのように知的タスクを実行するのに十分強力であり、あるいはそれを改善することさえ可能であり、いまだに願望、フィクションであり、我々の社会にとっての危険であると考えられてきた。
本研究は,GPAISの既存の定義について論じ,その特性や限界に応じて,GPAISの種類間で段階的な分化を可能にする新しい定義を提案する。
論文 参考訳(メタデータ) (2023-07-26T16:35:48Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Examining the Differential Risk from High-level Artificial Intelligence
and the Question of Control [0.0]
将来のAI能力の範囲と範囲は、依然として重要な不確実性である。
AIの不透明な意思決定プロセスの統合と監視の程度には懸念がある。
本研究では、AIリスクをモデル化し、代替先分析のためのテンプレートを提供する階層的な複雑なシステムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-06T15:46:02Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Structured access to AI capabilities: an emerging paradigm for safe AI
deployment [0.0]
AIシステムをオープンに普及させる代わりに、開発者はAIシステムとの制御された腕の長さのインタラクションを促進する。
Aimは、危険なAI能力が広くアクセスされることを防ぐと同時に、安全に使用できるAI機能へのアクセスを保護することを目的としている。
論文 参考訳(メタデータ) (2022-01-13T19:30:16Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Trustworthy AI in the Age of Pervasive Computing and Big Data [22.92621391190282]
我々は倫理的観点から信頼に値するAIシステムの要件を定式化する。
研究状況と残りの課題について議論した後、スマートシティにおける具体的なユースケースがこれらの方法のメリットを如何に示すかを示す。
論文 参考訳(メタデータ) (2020-01-30T08:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。