論文の概要: Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal
Gradient and Low-rank Approximation
- arxiv url: http://arxiv.org/abs/2302.05119v1
- Date: Fri, 10 Feb 2023 08:49:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 16:10:32.542444
- Title: Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal
Gradient and Low-rank Approximation
- Title(参考訳): 最適勾配と低ランク近似を用いた結合非負テンソル分解の高速学習
- Authors: Xiulin Wang, Tapani Ristaniemi and Fengyu Cong
- Abstract要約: 交互近位勾配法により最適化された非負のCANDECOMP/PARAFAC分解アルゴリズムを提案する。
提案した lraCoNCPD-APG アルゴリズムは,分解品質を損なうことなく,計算負荷を大幅に低減することができる。
- 参考スコア(独自算出の注目度): 17.785573076206855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonnegative tensor decomposition has been widely applied in signal processing
and neuroscience, etc. When it comes to group analysis of multi-block tensors,
traditional tensor decomposition is insufficient to utilize the shared/similar
information among tensors. In this study, we propose a coupled nonnegative
CANDECOMP/PARAFAC decomposition algorithm optimized by the alternating proximal
gradient method (CoNCPDAPG), which is capable of a simultaneous decomposition
of tensors from different samples that are partially linked and a simultaneous
extraction of common components, individual components and core tensors. Due to
the low optimization efficiency brought by the nonnegative constraint and the
high-dimensional nature of the data, we further propose the lraCoNCPD-APG
algorithm by combining low-rank approximation and the proposed CoNCPD-APG
method. When processing multi-block large-scale tensors, the proposed
lraCoNCPD-APG algorithm can greatly reduce the computational load without
compromising the decomposition quality. Experiment results of coupled
nonnegative tensor decomposition problems designed for synthetic data,
real-world face images and event-related potential data demonstrate the
practicability and superiority of the proposed algorithms.
- Abstract(参考訳): 非負のテンソル分解は信号処理や神経科学などに広く応用されている。
マルチブロックテンソルの群解析に関しては、従来のテンソル分解はテンソル間の共有/類似情報を利用するには不十分である。
本研究では,CANDECOMP/PARAFAC分解アルゴリズムを交互近位勾配法 (CoNCPDAPG) で最適化し,部分結合した異なる試料からテンソルを同時分解し,共通成分,個々の成分,コアテンソルを同時抽出する手法を提案する。
非負の制約によってもたらされる低最適化効率と高次元特性により、低ランク近似と提案したCoNCPD-APG法を組み合わせることで、lraCoNCPD-APGアルゴリズムを提案する。
マルチブロック大規模テンソルを処理する場合,提案アルゴリズムは分解品質を損なうことなく計算負荷を大幅に削減することができる。
合成データ, 実世界の顔画像, 事象関連電位データを対象とした非負のテンソル分解問題の結合実験の結果, 提案アルゴリズムの実用性と優位性を示す。
関連論文リスト
- Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Scalable and Robust Tensor Ring Decomposition for Large-scale Data [12.02023514105999]
本稿では,大規模テンソルデータに欠落したエントリと粗悪な破損を扱えるスケーラブルで堅牢なTR分解アルゴリズムを提案する。
まず, 欠落したエントリを適応的に満たし, 分解過程における外れ値の同定が可能な, 自己重み付き急勾配降下法を開発した。
論文 参考訳(メタデータ) (2023-05-15T22:08:47Z) - Fast and Provable Tensor Robust Principal Component Analysis via Scaled
Gradient Descent [30.299284742925852]
本稿では、テンソルロバスト主成分分析(RPCA)に取り組む。
希少な腐敗によって汚染された観測から低ランクのテンソルを回収することを目的としている。
提案アルゴリズムは, 最先端行列やテンソルRPCAアルゴリズムよりも, より優れた, よりスケーラブルな性能を実現する。
論文 参考訳(メタデータ) (2022-06-18T04:01:32Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - HyperNTF: A Hypergraph Regularized Nonnegative Tensor Factorization for
Dimensionality Reduction [2.1485350418225244]
ハイパーグラフ正規化非負因子法(HyperNTF)という新しい手法を提案する。
HyperNTFはテンソルファクタリゼーションにおいて非負性を維持し、最も近い近傍間の高次関係を明らかにすることができる。
実験の結果,HyperNTFはクラスタリング解析において最先端のアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-01-18T01:38:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Enhanced nonconvex low-rank approximation of tensor multi-modes for
tensor completion [1.3406858660972554]
我々は、新しい低ランク近似テンソルマルチモード(LRATM)を提案する。
ブロックバウンド法に基づくアルゴリズムは,提案手法を効率的に解くために設計されている。
3種類の公開多次元データセットの数値計算結果から,本アルゴリズムは様々な低ランクテンソルを復元可能であることが示された。
論文 参考訳(メタデータ) (2020-05-28T08:53:54Z) - A Unified Framework for Coupled Tensor Completion [42.19293115131073]
結合テンソル分解は、潜在結合因子に由来する事前知識を組み込むことで、結合データ構造を明らかにする。
TRは強力な表現能力を持ち、いくつかの多次元データ処理アプリケーションで成功している。
提案手法は, 合成データに関する数値実験で検証され, 実世界のデータに対する実験結果は, 回収精度の観点から, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-09T02:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。