論文の概要: Rank-Minimizing and Structured Model Inference
- arxiv url: http://arxiv.org/abs/2302.09521v1
- Date: Sun, 19 Feb 2023 09:46:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 18:10:56.027055
- Title: Rank-Minimizing and Structured Model Inference
- Title(参考訳): ランク最小化と構造モデル推論
- Authors: Pawan Goyal and Benjamin Peherstorfer and Peter Benner
- Abstract要約: この研究は、構造の形にエンコードされた物理的な洞察を持つデータからモデルを推論する手法を導入する。
提案手法は最小ランク解の方程式を数値的に解き、低次モデルを得る。
数値実験により、構造保存とランクの組み合わせは、同等の予測品質のモデルよりも桁違いに低い自由度を持つ正確なモデルをもたらすことが示された。
- 参考スコア(独自算出の注目度): 7.067529286680843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While extracting information from data with machine learning plays an
increasingly important role, physical laws and other first principles continue
to provide critical insights about systems and processes of interest in science
and engineering. This work introduces a method that infers models from data
with physical insights encoded in the form of structure and that minimizes the
model order so that the training data are fitted well while redundant degrees
of freedom without conditions and sufficient data to fix them are automatically
eliminated. The models are formulated via solution matrices of specific
instances of generalized Sylvester equations that enforce interpolation of the
training data and relate the model order to the rank of the solution matrices.
The proposed method numerically solves the Sylvester equations for minimal-rank
solutions and so obtains models of low order. Numerical experiments demonstrate
that the combination of structure preservation and rank minimization leads to
accurate models with orders of magnitude fewer degrees of freedom than models
of comparable prediction quality that are learned with structure preservation
alone.
- Abstract(参考訳): 機械学習でデータから情報を抽出することは、ますます重要な役割を担っているが、物理法則やその他の第一原理は、科学や工学に関心のあるシステムやプロセスに関する重要な洞察を提供し続けている。
本研究は, 構造に符号化された物理的洞察を持つデータからモデルを推論し, モデル順序を最小化し, トレーニングデータの適合性を抑えるとともに, 条件のない冗長な自由度と修正に十分なデータを自動的に除去する手法を提案する。
モデルは、トレーニングデータの補間を強制し、モデルの順序を解行列のランクに関連付ける一般化シルベスター方程式の特定の例の解行列によって定式化される。
提案手法は最小ランク解に対するシルベスター方程式を数値解し,低次モデルを得る。
数値実験により、構造保存とランク最小化の組み合わせは、構造保存だけで学習される同等の予測品質のモデルよりも、桁違いに低い自由度を持つ正確なモデルをもたらすことが示された。
関連論文リスト
- Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
提案したモデルアーキテクチャは、既存の文献のソリューションに比べてシンプルで効率的である。
この手法の検証はアームストロング・フレデリックのキネマティック・ハードニング・モデルを用いて得られたサロゲートデータを用いて行う。
論文 参考訳(メタデータ) (2024-03-04T07:09:54Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
エラスト塑性の定式化のモジュラリティに頼って,データの変動量に対処できるハイブリッドフレームワークについて論じる。
発見された物質モデルは、よく補間できるだけでなく、トレーニングデータの領域外から熱力学的に一貫した方法で正確な外挿を可能にする。
論文 参考訳(メタデータ) (2022-10-15T17:35:23Z) - Scientific Machine Learning for Modeling and Simulating Complex Fluids [0.0]
レオロジー方程式は複雑な流体の内部応力と変形を関連づける。
データ駆動モデルは、高価な第一原理モデルに代わる、アクセス可能な代替手段を提供する。
複素流体の類似モデルの開発が遅れている。
論文 参考訳(メタデータ) (2022-10-10T04:35:31Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
代理モデルを生成するためのモデルベースおよびデータ駆動型戦略を提案する。
後者は、前提となる位相構造に人工的関係を組み込むことで解釈可能な代理モデルを生成する。
我々のフレームワークは、分散パラメータモデルのための様々な空間離散化スキームと互換性がある。
論文 参考訳(メタデータ) (2022-02-02T17:07:02Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。