論文の概要: Ensemble learning for Physics Informed Neural Networks: a Gradient
Boosting approach
- arxiv url: http://arxiv.org/abs/2302.13143v1
- Date: Sat, 25 Feb 2023 19:11:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 18:38:19.729183
- Title: Ensemble learning for Physics Informed Neural Networks: a Gradient
Boosting approach
- Title(参考訳): 物理情報ニューラルネットワークのためのアンサンブル学習--勾配促進アプローチ
- Authors: Zhiwei Fang, Sifan Wang, and Paris Perdikaris
- Abstract要約: 段階的強化(GB)と呼ばれる新しい訓練パラダイムを提案する。
与えられたPDEの解を1つのニューラルネットワークで直接学習する代わりに、我々のアルゴリズムは、より優れた結果を得るために、一連のニューラルネットワークを用いています。
この研究は、PINNでアンサンブル学習技術を採用するための扉も開ける。
- 参考スコア(独自算出の注目度): 4.246111018621605
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While the popularity of physics-informed neural networks (PINNs) is steadily
rising, to this date, PINNs have not been successful in simulating multi-scale
and singular perturbation problems. In this work, we present a new training
paradigm referred to as "gradient boosting" (GB), which significantly enhances
the performance of physics informed neural networks (PINNs). Rather than
learning the solution of a given PDE using a single neural network directly,
our algorithm employs a sequence of neural networks to achieve a superior
outcome. This approach allows us to solve problems presenting great challenges
for traditional PINNs. Our numerical experiments demonstrate the effectiveness
of our algorithm through various benchmarks, including comparisons with finite
element methods and PINNs. Furthermore, this work also unlocks the door to
employing ensemble learning techniques in PINNs, providing opportunities for
further improvement in solving PDEs.
- Abstract(参考訳): 物理学インフォームドニューラルネットワーク(PINN)の人気は着実に上昇しているが、この時点では、PINNはマルチスケールおよび特異摂動問題のシミュレーションには成功していない。
本研究では、物理情報ニューラルネットワーク(PINN)の性能を大幅に向上させる「段階的強化(gradient boosting)」と呼ばれる新たなトレーニングパラダイムを提案する。
与えられたPDEの解を1つのニューラルネットワークで直接学習するのではなく、ニューラルネットワークのシーケンスを用いてより優れた結果を得る。
このアプローチにより、従来のPINNにとって大きな課題となる問題を解決することができる。
数値実験により,有限要素法とピンの比較を含む様々なベンチマークによるアルゴリズムの有効性を示す。
さらに、この研究は、PINNでアンサンブル学習技術を採用するための扉を開き、PDEの解法をさらに改善する機会を提供する。
関連論文リスト
- VS-PINN: A fast and efficient training of physics-informed neural networks using variable-scaling methods for solving PDEs with stiff behavior [0.0]
本稿では,変数スケーリング手法を用いたPINNのトレーニング手法を提案する。
提案手法の有効性を実証し,PINNのトレーニング効率と性能を大幅に向上させることができることを確認した。
論文 参考訳(メタデータ) (2024-06-10T14:11:15Z) - Binary structured physics-informed neural networks for solving equations
with rapidly changing solutions [3.6415476576196055]
偏微分方程式(PDE)を解くための有望なアプローチとして、物理情報ニューラルネットワーク(PINN)が登場した。
本稿では、ニューラルネットワークコンポーネントとしてバイナリ構造化ニューラルネットワーク(BsNN)を用いる、バイナリ構造化物理インフォームドニューラルネットワーク(BsPINN)フレームワークを提案する。
BsPINNは、PINNよりも収束速度と精度が優れている。
論文 参考訳(メタデータ) (2024-01-23T14:37:51Z) - Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks [24.14254861023394]
本研究では,物理インフォームドニューラルネットワーク (PINN) がそのような解法の一つとして考えられる可能性を秘めた経路を提案する。
PINNは、ディープラーニングと科学計算の適切な統合を開拓してきたが、ニューラルネットワークの反復的な時間的トレーニングを必要としている。
本稿では,数百のモデルパラメータと関連するハイパーネットワークに基づくメタ学習アルゴリズムを含む軽量な低ランクPINNを提案する。
論文 参考訳(メタデータ) (2023-10-14T08:13:43Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
physic-Informed Neural Networks (PINN) は、モデル方程式を符号化するニューラルネットワーク(NN)である。
PINNは現在ではPDE、分数方程式、積分微分方程式の解法として使われている。
論文 参考訳(メタデータ) (2022-01-14T19:05:44Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。