論文の概要: PRIMO: Private Regression in Multiple Outcomes
- arxiv url: http://arxiv.org/abs/2303.04195v2
- Date: Wed, 15 Jan 2025 15:06:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:50:29.230957
- Title: PRIMO: Private Regression in Multiple Outcomes
- Title(参考訳): PRIMO: 複数のアウトカムでプライベートな回帰
- Authors: Seth Neel,
- Abstract要約: 我々は、PRIMO(Private Regression in Multiple Outcomes)と呼ばれる新しいプライベートレグレッション設定を導入する。
PRIMOは、プライバシを保持しながら、データアナリストが$l$のレグレッションを実行したいという一般的な状況にインスパイアされている。
理論が予測するよりもはるかに小さい$l$の値であっても、射影法は射影を使わない変種と比較して精度を向上させる。
- 参考スコア(独自算出の注目度): 2.900810893770134
- License:
- Abstract: We introduce a new private regression setting we call Private Regression in Multiple Outcomes (PRIMO), inspired by the common situation where a data analyst wants to perform a set of $l$ regressions while preserving privacy, where the features $X$ are shared across all $l$ regressions, and each regression $i \in [l]$ has a different vector of outcomes $y_i$. Naively applying existing private linear regression techniques $l$ times leads to a $\sqrt{l}$ multiplicative increase in error over the standard linear regression setting. We apply a variety of techniques including sufficient statistics perturbation (SSP) and geometric projection-based methods to develop scalable algorithms that outperform this baseline across a range of parameter regimes. In particular, we obtain no dependence on l in the asymptotic error when $l$ is sufficiently large. Empirically, on the task of genomic risk prediction with multiple phenotypes we find that even for values of $l$ far smaller than the theory would predict, our projection-based method improves the accuracy relative to the variant that doesn't use the projection.
- Abstract(参考訳): PRIMO(Private Regression in Multiple Outcomes)と呼ばれる新しいプライベートレグレッション設定を導入し、データアナリストがプライバシを保ちながら$l$のレグレッションセットを実行したいという一般的な状況に着想を得た。
既存のプライベート線形回帰手法をネーティブに適用すると、$l$ timesは標準線形回帰設定に対する誤差の乗法的増加につながる。
本研究では,SSP法や幾何射影法など多種多様な手法を応用し,この基準線をパラメータの範囲で上回るスケーラブルなアルゴリズムを開発した。
特に、$l$が十分に大きい場合、漸近誤差の l への依存は得られない。
経験的に、複数の表現型を持つゲノムリスク予測のタスクにおいて、理論が予測するよりも$l$の値がはるかに小さい場合でも、射影に基づく手法は、射影を使用しない変種に対する精度を向上させる。
関連論文リスト
- Scaling Laws in Linear Regression: Compute, Parameters, and Data [86.48154162485712]
無限次元線形回帰セットアップにおけるスケーリング法則の理論について検討する。
テストエラーの再現可能な部分は$Theta(-(a-1) + N-(a-1)/a)$であることを示す。
我々の理論は経験的ニューラルスケーリング法則と一致し、数値シミュレーションによって検証される。
論文 参考訳(メタデータ) (2024-06-12T17:53:29Z) - Optimal Bias-Correction and Valid Inference in High-Dimensional Ridge Regression: A Closed-Form Solution [0.0]
寸法$p$がサンプルサイズ$n$より小さい場合、バイアスを効果的に補正するための反復戦略を導入する。
p>n$の場合、提案した非バイアス推定器の残余バイアスが到達不能であるようなバイアスを最適に緩和する。
本手法は,様々な分野にわたるリッジ回帰推論におけるバイアス問題に対する変換解を提供する。
論文 参考訳(メタデータ) (2024-05-01T10:05:19Z) - Streaming Sparse Linear Regression [1.8707139489039097]
本稿では,データポイントが逐次到着したときのストリーミングデータを解析する新しいオンライン疎線形回帰フレームワークを提案する。
提案手法はメモリ効率が高く,厳密な制約付き凸性仮定を必要とする。
論文 参考訳(メタデータ) (2022-11-11T07:31:55Z) - Dimension free ridge regression [10.434481202633458]
我々は、リッジ回帰のバイアスとばらつきの観点から、すなわちデータ上のリッジ回帰を再考し、等価なシーケンスモデルのバイアスとばらつきの観点から、リッジ回帰のバイアスとばらつきを考察する。
新しい応用として、定期的に変化するスペクトルを持つヒルベルト共変量に対して、完全に明示的で鋭い尾根回帰特性を得る。
論文 参考訳(メタデータ) (2022-10-16T16:01:05Z) - Easy Differentially Private Linear Regression [16.325734286930764]
本研究では,指数関数機構を用いて,非プライベート回帰モデルの集合からタキー深度の高いモデルを選択するアルゴリズムについて検討する。
このアルゴリズムは、データリッチな設定において、強い経験的性能を得る。
論文 参考訳(メタデータ) (2022-08-15T17:42:27Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
本稿では, 2次応答に対する一般化線形モデルである,$p$一般化プロビット回帰モデルについて検討する。
p$の一般化されたプロビット回帰に対する最大可能性推定器は、大容量データ上で$(1+varepsilon)$の係数まで効率的に近似できることを示す。
論文 参考訳(メタデータ) (2022-03-25T10:54:41Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
我々は、ソボレフ空間のクラス上の後悔の上限を$W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$ とする。
上界は minimax regret analysis で支えられ、$beta> fracd2$ または $p=infty$ の場合、これらの値は(本質的に)最適である。
論文 参考訳(メタデータ) (2021-02-06T15:05:14Z) - Conditional Uncorrelation and Efficient Non-approximate Subset Selection
in Sparse Regression [72.84177488527398]
相関性の観点からスパース回帰を考察し,条件付き非相関式を提案する。
提案手法により、計算複雑性は、スパース回帰における各候補部分集合に対して$O(frac16k3+mk2+mkd)$から$O(frac16k3+frac12mk2)$に削減される。
論文 参考訳(メタデータ) (2020-09-08T20:32:26Z) - Truncated Linear Regression in High Dimensions [26.41623833920794]
truncated linear regression において、従属変数 $(A_i, y_i)_i$ は $y_i= A_irm T cdot x* + eta_i$ は固定された未知の興味ベクトルである。
目標は、$A_i$とノイズ分布に関するいくつかの好ましい条件の下で$x*$を回復することである。
我々は、$k$-sparse $n$-dimensional vectors $x*$ from $m$ truncated sample。
論文 参考訳(メタデータ) (2020-07-29T00:31:34Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。