論文の概要: Context, Utility and Influence of an Explanation
- arxiv url: http://arxiv.org/abs/2303.13552v1
- Date: Wed, 22 Mar 2023 11:30:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 17:17:03.921015
- Title: Context, Utility and Influence of an Explanation
- Title(参考訳): 説明の文脈・実用性・影響
- Authors: Minal Suresh Patil and Kary Fr\"amling
- Abstract要約: 文脈効用理論は、文脈感受性因子をユーティリティベースの意思決定モデルに統合する。
個人の意思決定者の好み、価値観、信念を理解することの重要性を強調している。
これにより、AIシステムが意思決定にどう影響するかの透明性と理解が向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contextual utility theory integrates context-sensitive factors into
utility-based decision-making models. It stresses the importance of
understanding individual decision-makers' preferences, values, and beliefs and
the situational factors that affect them. Contextual utility theory benefits
explainable AI. First, it can improve transparency and understanding of how AI
systems affect decision-making. It can reveal AI model biases and limitations
by considering personal preferences and context. Second, contextual utility
theory can make AI systems more personalized and adaptable to users and
stakeholders. AI systems can better meet user needs and values by incorporating
demographic and cultural data. Finally, contextual utility theory promotes
ethical AI development and social responsibility. AI developers can create
ethical systems that benefit society by considering contextual factors like
societal norms and values. This work, demonstrates how contextual utility
theory can improve AI system transparency, personalization, and ethics,
benefiting both users and developers.
- Abstract(参考訳): コンテキストユーティリティ理論は、コンテキスト依存因子をユーティリティベースの意思決定モデルに統合する。
個人の意思決定者の好み、価値観、信念を理解することの重要性と、それらに影響を与える状況要因を強調する。
コンテキストユーティリティ理論は、説明可能なAIに恩恵を与える。
まず、AIシステムが意思決定にどう影響するかの透明性と理解を改善することができる。
個人の好みやコンテキストを考慮することで、AIモデルのバイアスと制限を明らかにすることができる。
第二に、コンテキストユーティリティ理論は、AIシステムをよりパーソナライズし、ユーザや利害関係者に適応させることができる。
aiシステムは人口統計と文化データを組み込むことで、ユーザーのニーズと価値をよりよく満たすことができる。
最後に、文脈ユーティリティ理論は倫理的AI開発と社会的責任を促進する。
ai開発者は社会規範や価値観といった文脈的要因を考慮して、社会に利益をもたらす倫理的システムを作ることができる。
この研究は、コンテキストユーティリティ理論がAIシステムの透明性、パーソナライゼーション、倫理を改善し、ユーザと開発者の双方に利益をもたらすことを示す。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Toward an Artist-Centred AI [0.0]
本稿では、芸術におけるAIの使用に関する原則、実践、ツールの適合性と望ましい概念を文脈的に分析する。
AIがアート制作、流通、消費、収益化にもたらす課題を調べることで構成された。
論文 参考訳(メタデータ) (2024-04-13T09:43:23Z) - Does Explainable AI Have Moral Value? [0.0]
説明可能なAI(XAI)は、複雑なアルゴリズムシステムと人間の利害関係者のギャップを埋めることを目的としている。
現在の談話では、XAIを技術ツール、ユーザインターフェース、あるいはポリシーメカニズムとして独立して検討することが多い。
本稿では,道徳的義務と相互性の概念を基盤とした統一的倫理的枠組みを提案する。
論文 参考訳(メタデータ) (2023-11-05T15:59:27Z) - Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination [1.4305544869388402]
知識グラフ(KG)は、インテリジェントな意思決定を支えるための基盤として登場した。
KGと神経学習の統合は、現在活発な研究のトピックである。
本稿では,KGベースのAIによる自己決定を支援するための基礎的なトピックと研究の柱を概念化する。
論文 参考訳(メタデータ) (2023-10-30T12:51:52Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Relational Artificial Intelligence [5.5586788751870175]
AIは伝統的に合理的な意思決定と結びついているが、すべての面においてAIの社会的影響を理解し、形作るためには、リレーショナルな視点が必要である。
AIに対する合理的なアプローチでは、計算アルゴリズムが人間の介入から独立して意思決定を推進し、バイアスと排除をもたらすことが示されている。
物事のリレーショナルな性質に焦点を当てたリレーショナルアプローチは、AIの倫理的、法的、社会的、文化的、環境的な影響を扱うために必要である。
論文 参考訳(メタデータ) (2022-02-04T15:29:57Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - The human-AI relationship in decision-making: AI explanation to support
people on justifying their decisions [4.169915659794568]
人々は、AIがどのように機能するか、そしてそのシステムとの関係を構築するために、その成果をもっと意識する必要があります。
意思決定のシナリオでは、人々はAIがどのように機能するか、そしてそのシステムとの関係を構築する結果についてもっと意識する必要があります。
論文 参考訳(メタデータ) (2021-02-10T14:28:34Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
論文 参考訳(メタデータ) (2019-12-29T17:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。