Quantum Multi-Model Fitting
- URL: http://arxiv.org/abs/2303.15444v1
- Date: Mon, 27 Mar 2023 17:59:54 GMT
- Title: Quantum Multi-Model Fitting
- Authors: Matteo Farina and Luca Magri and Willi Menapace and Elisa Ricci and
Vladislav Golyanik and Federica Arrigoni
- Abstract summary: This paper proposes the first quantum approach to multi-model fitting (MMF)
We formulate MMF as a problem that can be efficiently sampled by modern adiabatic quantum computers without the relaxation of the objective function.
The experimental evaluation demonstrates promising results on a variety of datasets.
- Score: 38.11392123303445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric model fitting is a challenging but fundamental computer vision
problem. Recently, quantum optimization has been shown to enhance robust
fitting for the case of a single model, while leaving the question of
multi-model fitting open. In response to this challenge, this paper shows that
the latter case can significantly benefit from quantum hardware and proposes
the first quantum approach to multi-model fitting (MMF). We formulate MMF as a
problem that can be efficiently sampled by modern adiabatic quantum computers
without the relaxation of the objective function. We also propose an iterative
and decomposed version of our method, which supports real-world-sized problems.
The experimental evaluation demonstrates promising results on a variety of
datasets. The source code is available at:
https://github.com/FarinaMatteo/qmmf.
Related papers
- Outlier-Robust Multi-Model Fitting on Quantum Annealers [29.24367815462826]
Multi-model fitting (MMF) presents a significant challenge in Computer Vision.
Existing quantum-based approaches for model fitting are either limited to a single model or consider multi-model scenarios within outlier-free datasets.
This paper introduces a novel approach, the robust quantum multi-model fitting (R-QuMF) algorithm to handle outliers effectively.
arXiv Detail & Related papers (2025-04-18T17:59:53Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.
We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.
We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Simulating strongly interacting Hubbard chains with the Variational
Hamiltonian Ansatz on a quantum computer [0.0]
Variational Quantum Eigensolver (VQE) has been implemented to study molecules and condensed matter systems on small size quantum computers.
We try to answer the question: how much of the underlying physics of a 1D Hubbard chain is described by a problem-inspired Variational Hamiltonian Ansatz (VHA) in a broad range of parameter values.
Our findings suggest that even low fidelity solutions capture energy and number of doubly occupied sites well, while spin-spin correlations are not well captured even when the solution is of high fidelity.
arXiv Detail & Related papers (2021-11-23T16:54:36Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Model Predictive Control for Finite Input Systems using the D-Wave
Quantum Annealer [4.83782736808514]
The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest.
We present a model predictive control (MPC) algorithm using a quantum annealer.
Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated.
arXiv Detail & Related papers (2020-01-06T05:11:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.