論文の概要: Learning distributed representations with efficient SoftMax normalization
- arxiv url: http://arxiv.org/abs/2303.17475v4
- Date: Sun, 01 Jun 2025 14:02:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-03 16:22:42.644572
- Title: Learning distributed representations with efficient SoftMax normalization
- Title(参考訳): 効率的なSoftMax正規化による分散表現の学習
- Authors: Lorenzo Dall'Amico, Enrico Maria Belliardo,
- Abstract要約: 有界ノルムを持つ埋め込みベクトルに対して$rm SoftMax(XYT)$の正規化定数を計算する線形時間近似を提案する。
本稿では,提案手法が競合手法よりも高い精度あるいは同等の精度を達成できるような事前学習した埋め込みデータセットについて述べる。
提案アルゴリズムは解釈可能で,任意の埋め込み問題に容易に適応できる。
- 参考スコア(独自算出の注目度): 3.8673630752805437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning distributed representations, or embeddings, that encode the relational similarity patterns among objects is a relevant task in machine learning. A popular method to learn the embedding matrices $X, Y$ is optimizing a loss function of the term ${\rm SoftMax}(XY^T)$. The complexity required to calculate this term, however, runs quadratically with the problem size, making it a computationally heavy solution. In this article, we propose a linear-time heuristic approximation to compute the normalization constants of ${\rm SoftMax}(XY^T)$ for embedding vectors with bounded norms. We show on some pre-trained embedding datasets that the proposed estimation method achieves higher or comparable accuracy with competing methods. From this result, we design an efficient and task-agnostic algorithm that learns the embeddings by optimizing the cross entropy between the softmax and a set of probability distributions given as inputs. The proposed algorithm is interpretable and easily adapted to arbitrary embedding problems. We consider a few use cases and observe similar or higher performances and a lower computational time than similar ``2Vec'' algorithms.
- Abstract(参考訳): オブジェクト間のリレーショナル類似パターンをエンコードする分散表現(あるいは埋め込み)を学習することは、機械学習における関連するタスクである。
埋め込み行列を$X, Y$で学ぶ一般的な方法は、${\rm SoftMax}(XY^T)$の損失関数を最適化することである。
しかし、この項を計算するのに必要な複雑さは、問題の大きさの2乗に比例して実行され、計算的に重い解となる。
本稿では,有界ノルムを持つ埋め込みベクトルに対して${\rm SoftMax}(XY^T)$の正規化定数を計算する線形時間ヒューリスティック近似を提案する。
本稿では,提案手法が競合手法よりも高い精度あるいは同等の精度を達成できるような事前学習した埋め込みデータセットについて述べる。
この結果から,ソフトマックスと入力として与えられる確率分布の集合との交叉エントロピーを最適化することにより,組込みを効率よく,タスクに依存しないアルゴリズムを設計する。
提案アルゴリズムは解釈可能で,任意の埋め込み問題に容易に適応できる。
我々は、いくつかのユースケースを考慮し、類似または高い性能と、類似の ``2Vec'' アルゴリズムよりも低い計算時間を観察する。
関連論文リスト
- Approximating Metric Magnitude of Point Sets [4.522729058300309]
計量等級は、多くの望ましい幾何学的性質を持つ点雲の「大きさ」の尺度である。
様々な数学的文脈に適応しており、最近の研究は機械学習と最適化アルゴリズムを強化することを示唆している。
本稿では, 等級問題について検討し, 効率よく近似する方法を示し, 凸最適化問題として扱うことができるが, 部分モジュラ最適化としては適用できないことを示す。
本稿では,高速に収束し精度の高い反復近似アルゴリズムと,計算をより高速に行うサブセット選択法という,2つの新しいアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-09-06T17:15:28Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Learning the Positions in CountSketch [49.57951567374372]
本稿では,まずランダムなスケッチ行列に乗じてデータを圧縮し,最適化問題を高速に解くスケッチアルゴリズムについて検討する。
本研究では,ゼロでないエントリの位置を最適化する学習ベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-11T07:28:35Z) - Fast Optimal Locally Private Mean Estimation via Random Projections [58.603579803010796]
ユークリッド球における高次元ベクトルの局所的プライベート平均推定の問題について検討する。
プライベート平均推定のための新しいアルゴリズムフレームワークであるProjUnitを提案する。
各ランダム化器はその入力をランダムな低次元部分空間に投影し、結果を正規化し、最適なアルゴリズムを実行する。
論文 参考訳(メタデータ) (2023-06-07T14:07:35Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap は、ワーッサーシュタイン空間の低次元構造を明らかにするための計算可能なアルゴリズムである。
我々は,LOT Wassmapが正しい埋め込みを実現し,サンプルサイズの増加とともに品質が向上することを示す。
また、LOT Wassmapがペア距離計算に依存するアルゴリズムと比較して計算コストを大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-02-14T22:12:16Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
現在のアルゴリズムはブロック座標降下法や近点アルゴリズムを用いて設計されている。
本稿では,2次元投影法に基づく新しいアルゴリズムを提案し,慎重に設計された探索方向と変数分割方式を取り入れた。
合成および実世界のデータセットに対する実験結果から,提案アルゴリズムは最先端の手法と比較して計算効率を著しく向上させることを示した。
論文 参考訳(メタデータ) (2021-12-03T14:39:10Z) - Algorithmic Solution for Systems of Linear Equations, in
$\mathcal{O}(mn)$ time [0.0]
方程式の線形系の探索解を超高速に求める新しいアルゴリズムを提案する。
実行時間は最先端のメソッドと比較して非常に短い。
この論文はアルゴリズム収束の理論的証明も含んでいる。
論文 参考訳(メタデータ) (2021-04-26T13:40:31Z) - Parallel Scheduling Self-attention Mechanism: Generalization and
Optimization [0.76146285961466]
本稿では,SAT(Satisfiability check)ソルバによって解決された小インスタンスの最適スケジューリングから導いた一般スケジューリングアルゴリズムを提案する。
余剰計算をスキップする際のさらなる最適化戦略も推進され、元の計算の約25%と50%の削減が達成される。
提案アルゴリズムは、入力ベクトルの数がアーキテクチャで利用可能な演算ユニットの数に割り切れる限り、問題のサイズにかかわらず適用可能である。
論文 参考訳(メタデータ) (2020-12-02T12:04:16Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Estimating Multiple Precision Matrices with Cluster Fusion
Regularization [0.90238471756546]
異なるクラスから複数の精度行列を推定するペナライズされた可能性を提案する。
既存の手法の多くは、精度行列間の関係に関する情報を含まないか、あるいはこの情報を先入観として要求する。
論文 参考訳(メタデータ) (2020-03-01T01:03:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。