Quantum interference between distant creation processes
- URL: http://arxiv.org/abs/2304.03683v1
- Date: Fri, 7 Apr 2023 15:09:51 GMT
- Title: Quantum interference between distant creation processes
- Authors: Johannes Pseiner, Manuel Erhard, Mario Krenn
- Abstract summary: We introduce a novel approach to generate macroscopic quantum systems by demonstrating that the creation process of a quantum system can span a macroscopic distance.
Specifically, we generate photon pairs in a coherent superposition of two origins separated by up to 70 meters.
This new approach not only provides an exciting opportunity for foundational experiments in quantum physics, but also has practical applications for high-precision measurements of distributed properties.
- Score: 1.2891210250935146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The search for macroscopic quantum phenomena is a fundamental pursuit in
quantum mechanics. It allows us to test the limits quantum physics and provides
new avenues for exploring the interplay between quantum mechanics and
relativity. In this work, we introduce a novel approach to generate macroscopic
quantum systems by demonstrating that the creation process of a quantum system
can span a macroscopic distance. Specifically, we generate photon pairs in a
coherent superposition of two origins separated by up to 70 meters. This new
approach not only provides an exciting opportunity for foundational experiments
in quantum physics, but also has practical applications for high-precision
measurements of distributed properties such as pressure and humidity of air or
gases.
Related papers
- Toward coherent quantum computation of scattering amplitudes with a
measurement-based photonic quantum processor [0.0]
We discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD.
We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates.
arXiv Detail & Related papers (2023-12-19T21:36:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Engineering quantum states from a spatially structured quantum eraser [0.0]
Quantum interference can be enabled by projecting the quantum state onto ambiguous properties that render the photons indistinguishable.
By combining these ideas, here we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states.
We believe these spatially-engineered multi-photon quantum states may be of significance in fields such as quantum metrology, microscopy, and communications.
arXiv Detail & Related papers (2023-06-24T00:11:36Z) - Quantum memories for fundamental science in space [0.0]
We promote the case of exploiting quantum memories for fundamental physics in space.
We discuss both distinct experiments as well as potential quantum memory platforms and their performance.
arXiv Detail & Related papers (2023-03-21T12:52:22Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Thermally-induced qubit coherence in quantum electromechanics [0.0]
Coherence is the ability of a quantum system to be in a superposition of quantum states.
We show that quantum coherence is created in a composite system solely from the interaction of the parts.
arXiv Detail & Related papers (2022-06-09T13:33:45Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.