論文の概要: Localisation of Regularised and Multiview Support Vector Machine
Learning
- arxiv url: http://arxiv.org/abs/2304.05655v2
- Date: Sun, 10 Dec 2023 10:31:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 02:57:18.383406
- Title: Localisation of Regularised and Multiview Support Vector Machine
Learning
- Title(参考訳): 正規化・多視点支援ベクトル機械学習のローカライズ
- Authors: Aurelian Gheondea and Cankat Tilki
- Abstract要約: 正規化および多視点支援ベクトル機械学習問題の局所化版に対するいくつかの代表者定理を証明した。
一般のフレームワークは、いくつかの特別な場合において無限次元の入力空間と非損失関数を許容することを示します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove a few representer theorems for a localised version of the
regularised and multiview support vector machine learning problem introduced by
H.Q.~Minh, L.~Bazzani, and V.~Murino, \textit{Journal of Machine Learning
Research}, \textbf{17}(2016) 1--72, that involves operator valued positive
semidefinite kernels and their reproducing kernel Hilbert spaces. The results
concern general cases when convex or nonconvex loss functions and finite or
infinite dimensional input spaces are considered. We show that the general
framework allows infinite dimensional input spaces and nonconvex loss functions
for some special cases, in particular in case the loss functions are G\^ateaux
differentiable. Detailed calculations are provided for the exponential least
squares loss functions that leads to partially nonlinear problems.
- Abstract(参考訳): 我々は、H.Q.~Minh, L によって導入された正規化および多視点支援ベクトル機械学習問題の局所化バージョンに対するいくつかの代表者定理を証明した。
〜bazzani,v。
~murino, \textit{journal of machine learning research}, \textbf{17}(2016) 1--72, 演算子値の正の半定義核とその再生成核ヒルベルト空間を含む。
結果は、凸または非凸損失函数と有限または無限次元の入力空間を考える場合の一般的な場合に関する。
一般化されたフレームワークは無限次元の入力空間と非凸損失関数を特別な場合、特に損失関数が g\^ateaux 微分可能である場合に許容する。
部分非線形問題につながる指数最小二乗損失関数について、詳細な計算が提供される。
関連論文リスト
- Keep your distance: learning dispersed embeddings on $\mathbb{S}_d$ [9.708595749421022]
表現学習では、高次元空間における多くの特徴を扱うのが一般的である。
本稿では,既存の手法の概要を述べるとともに,新しい接続を構築,類似性を強調する。
汎用ドメイン上での分散のための効果的な代替正則化器として,K-Means の名声を持つロイズアルゴリズムのオンライン版を提案する。
論文 参考訳(メタデータ) (2025-02-12T09:20:08Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Quantum metrology with linear Lie algebra parameterisations [0.0]
我々は、線形微分方程式をもたらす量子フィッシャー情報に対する新しいリー代数展開を提供する。
これにより、多くの気象問題に関わる計算が大幅に削減される。
量子光学および非線形光学における問題に適用されたこれらの手法の詳細な例を示す。
論文 参考訳(メタデータ) (2023-11-21T08:58:34Z) - Regularized ERM on random subspaces [17.927376388967144]
我々は、Nystromがカーネルメソッドに近づいた特殊なケースとして、データのランダムなサブセットにまたがるデータ依存部分空間を考える。
ランダムな部分空間を考えると自然に計算上の節約につながるが、問題は対応する学習精度が劣化するかどうかである。
論文 参考訳(メタデータ) (2022-12-04T16:12:11Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
線形汎関数に対するバイアス認識設計のためのアルゴリズムを提供する。
準ガウス雑音下での固定および適応設計に対する漸近的でない信頼集合を導出する。
論文 参考訳(メタデータ) (2022-05-26T20:56:25Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
DID(DID)は、幅広いデータ空間に適用可能なペアワイズな相似性尺度である。
我々は、DIDが理論的研究と実用に関係のある特性を享受していることを証明する。
論文 参考訳(メタデータ) (2022-02-11T13:51:30Z) - Adjoint-aided inference of Gaussian process driven differential
equations [0.8257490175399691]
本稿では,線形系の随伴性を用いて,GPとしてモデル化された強制関数を効率的に推論する方法を示す。
常微分方程式と偏微分方程式の両方の系に対するアプローチを実証する。
論文 参考訳(メタデータ) (2022-02-09T17:35:14Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
同じ良い線形モデルから非負関数に対する最初のモデルを提供する。
我々は、それが表現定理を認め、凸問題に対する効率的な二重定式化を提供することを証明した。
論文 参考訳(メタデータ) (2020-07-08T07:17:28Z) - Regularized ERM on random subspaces [18.541369654442796]
我々は、データのランダムなサブセットにまたがるデータ依存部分空間を、カーネルメソッドに対するNystr"omアプローチの特別なケースとして、リカバリする可能性があると考えている。
ランダムな部分空間を考えると自然に計算上の節約につながるが、問題は対応する学習精度が劣化するかどうかである。
論文 参考訳(メタデータ) (2020-06-17T17:21:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。