論文の概要: End-User Development for Artificial Intelligence: A Systematic
Literature Review
- arxiv url: http://arxiv.org/abs/2304.09863v1
- Date: Fri, 14 Apr 2023 09:57:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-23 04:07:39.475260
- Title: End-User Development for Artificial Intelligence: A Systematic
Literature Review
- Title(参考訳): 人工知能のためのエンドユーザー開発 : 体系的文献レビュー
- Authors: Andrea Esposito, Miriana Calvano, Antonio Curci, Giuseppe Desolda,
Rosa Lanzilotti, Claudia Lorusso and Antonio Piccinno
- Abstract要約: エンドユーザ開発(EUD)は、AIベースのシステムを自分たちのニーズに合わせて作成、カスタマイズ、あるいは適用することができる。
本稿では,AIシステムにおけるEUDの現在の状況に光を当てることを目的とした文献レビューを紹介する。
- 参考スコア(独自算出の注目度): 2.347942013388615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Artificial Intelligence has become more and more relevant in
our society. Creating AI systems is almost always the prerogative of IT and AI
experts. However, users may need to create intelligent solutions tailored to
their specific needs. In this way, AI systems can be enhanced if new approaches
are devised to allow non-technical users to be directly involved in the
definition and personalization of AI technologies. End-User Development (EUD)
can provide a solution to these problems, allowing people to create, customize,
or adapt AI-based systems to their own needs. This paper presents a systematic
literature review that aims to shed the light on the current landscape of EUD
for AI systems, i.e., how users, even without skills in AI and/or programming,
can customize the AI behavior to their needs. This study also discusses the
current challenges of EUD for AI, the potential benefits, and the future
implications of integrating EUD into the overall AI development process.
- Abstract(参考訳): 近年,人工知能は社会に益々関連してきている。
AIシステムを開発することは、ほとんど常にITとAIの専門家の偏見である。
しかし、ユーザーは特定のニーズに合わせてインテリジェントなソリューションを作成する必要がある。
このように、非技術者のユーザがAIテクノロジの定義とパーソナライズに直接関与できるように、新しいアプローチが考案された場合、AIシステムは強化される。
エンドユーザ開発(EUD)は、これらの問題に対するソリューションを提供し、AIベースのシステムを自分たちのニーズに合わせて作成、カスタマイズ、あるいは適用することができる。
本稿では,AIシステムにおけるEUDの現在の状況,すなわち,AIやプログラミングのスキルがなくても,AIの振る舞いをニーズに合わせてカスタマイズする方法について,体系的な文献レビューを行う。
本研究は、AIにおけるEUDの現在の課題、潜在的なメリット、そして、EUDをAI開発プロセス全体に統合する将来の意味についても論じる。
関連論文リスト
- Human-Centric eXplainable AI in Education [0.0]
本稿では,教育現場における人間中心型eXplainable AI(HCXAI)について検討する。
学習成果の向上、ユーザ間の信頼の向上、AI駆動ツールの透明性確保における役割を強調している。
ユーザ理解とエンゲージメントを優先するHCXAIシステムの開発のための包括的なフレームワークを概説する。
論文 参考訳(メタデータ) (2024-10-18T14:02:47Z) - Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
人工知能(AGI)は、人工知能(AI)研究においてしばらくの間、明白な目標であった。
AGIは、人間のように、新しい問題領域にさらされ、それを学び、推論プロセスを使って意思決定する能力を持つでしょう。
本稿では,AGIの製作に向けての歩みについて述べる。
論文 参考訳(メタデータ) (2024-06-17T07:21:44Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Structured access to AI capabilities: an emerging paradigm for safe AI
deployment [0.0]
AIシステムをオープンに普及させる代わりに、開発者はAIシステムとの制御された腕の長さのインタラクションを促進する。
Aimは、危険なAI能力が広くアクセスされることを防ぐと同時に、安全に使用できるAI機能へのアクセスを保護することを目的としている。
論文 参考訳(メタデータ) (2022-01-13T19:30:16Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Time for AI (Ethics) Maturity Model Is Now [15.870654219935972]
この記事では、AIソフトウェアはまだソフトウェアであり、ソフトウェア開発の観点からアプローチする必要がある、と論じる。
我々は、AI倫理に重点を置くべきか、それともより広く、AIシステムの品質に重点を置くべきかを議論したい。
論文 参考訳(メタデータ) (2021-01-29T17:37:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。