論文の概要: Dynamic Pricing and Learning with Bayesian Persuasion
- arxiv url: http://arxiv.org/abs/2304.14385v2
- Date: Sun, 10 Dec 2023 22:39:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 02:59:37.010245
- Title: Dynamic Pricing and Learning with Bayesian Persuasion
- Title(参考訳): ベイジアン説得による動的価格と学習
- Authors: Shipra Agrawal, Yiding Feng, Wei Tang
- Abstract要約: 我々は,商品の価格設定に加えて,販売者が「広告計画」にコミットする,新たな動的価格設定と学習環境を考える。
我々は、バイエルンの一般的な説得フレームワークを使用して、これらのシグナルが購入者の評価と購入反応に与える影響をモデル化する。
我々は、過去の購入応答を利用して最適な価格と広告戦略を適応的に学習できるオンラインアルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 18.59029578133633
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We consider a novel dynamic pricing and learning setting where in addition to
setting prices of products in sequential rounds, the seller also ex-ante
commits to 'advertising schemes'. That is, in the beginning of each round the
seller can decide what kind of signal they will provide to the buyer about the
product's quality upon realization. Using the popular Bayesian persuasion
framework to model the effect of these signals on the buyers' valuation and
purchase responses, we formulate the problem of finding an optimal design of
the advertising scheme along with a pricing scheme that maximizes the seller's
expected revenue. Without any apriori knowledge of the buyers' demand function,
our goal is to design an online algorithm that can use past purchase responses
to adaptively learn the optimal pricing and advertising strategy. We study the
regret of the algorithm when compared to the optimal clairvoyant price and
advertising scheme.
Our main result is a computationally efficient online algorithm that achieves
an $O(T^{2/3}(m\log T)^{1/3})$ regret bound when the valuation function is
linear in the product quality. Here $m$ is the cardinality of the discrete
product quality domain and $T$ is the time horizon. This result requires some
natural monotonicity and Lipschitz assumptions on the valuation function, but
no Lipschitz or smoothness assumption on the buyers' demand function. For
constant $m$, our result matches the regret lower bound for dynamic pricing
within logarithmic factors, which is a special case of our problem. We also
obtain several improved results for the widely considered special case of
additive valuations, including an $\tilde{O}(T^{2/3})$ regret bound independent
of $m$ when $m\le T^{1/3}$.
- Abstract(参考訳): 我々は,商品の価格設定に加えて,販売者が「広告計画」にコミットする,新たな動的価格設定と学習環境について考察する。
つまり、各ラウンドの開始時に、売り手は商品の品質について購入者にどのような信号を提供するかを決定することができる。
人気の高いベイズ説得フレームワークを用いて、これらのシグナルが購入者の評価と購入応答に及ぼす影響をモデル化し、販売者の期待収益を最大化する価格体系とともに、広告スキームの最適設計を求める問題を定式化する。
購入者の需要関数を事前に知ることなく、過去の購入応答を利用して最適な価格と広告戦略を適応的に学習できるオンラインアルゴリズムを設計することを目標としている。
本稿では,最適な価格と広告手法と比較し,アルゴリズムの後悔について考察する。
我々の主な結果は計算効率の良いオンラインアルゴリズムであり、製品品質において評価関数が線形であるときに$o(t^{2/3}(m\log t)^{1/3})$ regret boundを達成する。
ここで $m$ は離散的製品品質ドメインの濃度であり、$t$ は時間軸である。
この結果は、バリュエーション関数に対する自然な単調性とリプシッツの仮定を必要とするが、購入者の要求関数に対するリプシッツや滑らかさの仮定は不要である。
定数$m$の場合、この結果は対数係数内での動的価格設定に対する後悔の少ない低い値と一致します。
また、より広範に考慮された加法評価の特別ケースに対して、$m$ の独立性を持つ $\tilde{O}(T^{2/3})$ regret bound を含むいくつかの改善された結果を得る。
関連論文リスト
- A Multimodal Analysis of Influencer Content on Twitter [40.41635575764701]
個人的な意見と商業的コンテンツの宣伝の線は、しばしばぼやけている。
これにより、インフルエンサー広告に関連する規制コンプライアンス違反の自動検出が困難になる。
我々は15,998のインフルエンサー投稿を商業的および非商業的カテゴリにマッピングした新しいTwitter(現在のX)データセットを紹介した。
論文 参考訳(メタデータ) (2023-09-06T15:07:23Z) - Incrementality Bidding and Attribution [0.4511923587827302]
デジタル広告では、広告購入/入札/価格、帰属、実験という3つのパズルピースが、広告のインクリメンタル性を定量化する中心となる。
本稿では,これら3つの概念を,入札と帰属の双方の計算可能なモデルに統一する手法を提案する。
論文 参考訳(メタデータ) (2022-08-25T18:33:08Z) - Persuasion Strategies in Advertisements [68.70313043201882]
我々は,説得戦略の広範な語彙を導入し,説得戦略を付加した最初の広告画像コーパスを構築した。
次に,マルチモーダル学習による説得戦略予測のタスクを定式化する。
我々は、Fortune-500社の1600件の広告キャンペーンについて、現実世界でケーススタディを実施している。
論文 参考訳(メタデータ) (2022-08-20T07:33:13Z) - Personality-Driven Social Multimedia Content Recommendation [68.46899477180837]
人格特性がコンテンツレコメンデーションモデルに与える影響を,新しいパーソナリティ駆動型マルチビューコンテンツレコメンデーションシステムを適用して検討する。
実験結果と実世界のケーススタディは、PersiCが効率的な人格駆動型マルチビューコンテンツレコメンデーションを行う能力だけでなく、実用的なデジタル広告戦略レコメンデーションを可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-25T14:37:18Z) - Aspect-based Analysis of Advertising Appeals for Search Engine
Advertising [37.85305426549587]
我々は、広告作成プロセスを支援することを目的として、さまざまな業界で効果的なA$3を探索することに重点を置いている。
実験の結果,異なる産業がそれぞれA$3$を有し,A$3$の識別が広告効果の推定に寄与することが確認された。
論文 参考訳(メタデータ) (2022-04-25T05:31:07Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
リアルタイム入札(Real-Time Bidding)は、インターネット広告システムで、近年非常に人気を集めている。
本稿では、経済的な側面だけでなく、広告システムの機能にかかわる他の要因も考慮した、新たなアプローチによる代替ベッティングシステムを提案する。
論文 参考訳(メタデータ) (2020-10-22T18:36:41Z) - Online-to-Offline Advertisements as Field Experiments [0.17877823660518105]
オンライン広告を受けた顧客と常連客のオフライン行動の違いについて検討した。
そして、この広告の外部性による長期的効果として、一部の顧客がオフライン店舗に招待された場合、これらの店舗を再訪する。
論文 参考訳(メタデータ) (2020-10-18T22:04:56Z) - Learning to Infer User Hidden States for Online Sequential Advertising [52.169666997331724]
本稿では,これらの問題に対処するディープインテントシーケンス広告(DISA)手法を提案する。
解釈可能性の鍵となる部分は、消費者の購入意図を理解することである。
論文 参考訳(メタデータ) (2020-09-03T05:12:26Z) - A Deep Prediction Network for Understanding Advertiser Intent and
Satisfaction [41.000912016821246]
本稿では,広告主の意図と満足度を同時にモデル化する新しいDeep Satisfaction Prediction Network (DSPN)を提案する。
提案するDSPNは,最先端のベースラインより優れ,オンライン環境におけるAUCの観点からも安定した性能を有する。
論文 参考訳(メタデータ) (2020-08-20T15:08:50Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
我々は、動的knapsack問題として、シーケンシャルな広告戦略最適化を定式化する。
理論的に保証された二段階最適化フレームワークを提案し、元の最適化空間の解空間を大幅に削減する。
強化学習の探索効率を向上させるため,効果的な行動空間削減手法も考案した。
論文 参考訳(メタデータ) (2020-06-29T18:50:35Z) - Do Interruptions Pay Off? Effects of Interruptive Ads on Consumers
Willingness to Pay [79.9312329825761]
本研究は,広告主ブランドの商品に対する消費者の支払い意欲に及ぼす割り込み広告の影響を計測する研究結果である。
本研究は, 広告の経済的影響に関する研究に寄与し, 実験マーケティング研究における実際の(自己申告の)支払意欲を測定する方法を紹介した。
論文 参考訳(メタデータ) (2020-05-14T09:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。