Neural-Shadow Quantum State Tomography
- URL: http://arxiv.org/abs/2305.01078v2
- Date: Sun, 16 Jun 2024 03:25:33 GMT
- Title: Neural-Shadow Quantum State Tomography
- Authors: Victor Wei, W. A. Coish, Pooya Ronagh, Christine A. Muschik,
- Abstract summary: "neural-shadow quantum state tomography" (NSQST) is an alternative neural network-based quantum state tomography protocol.
Infidelity is estimated using the classical shadows of the target state.
NSQST is robust against various types of noise without any error mitigation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state tomography (QST) is the art of reconstructing an unknown quantum state through measurements. It is a key primitive for developing quantum technologies. Neural network quantum state tomography (NNQST), which aims to reconstruct the quantum state via a neural network ansatz, is often implemented via a basis-dependent cross-entropy loss function. State-of-the-art implementations of NNQST are often restricted to characterizing a particular subclass of states, to avoid an exponential growth in the number of required measurement settings. To provide a more broadly applicable method for efficient state reconstruction, we present "neural-shadow quantum state tomography" (NSQST)-an alternative neural network-based QST protocol that uses infidelity as the loss function. The infidelity is estimated using the classical shadows of the target state. Infidelity is a natural choice for training loss, benefiting from the proven measurement sample efficiency of the classical shadow formalism. Furthermore, NSQST is robust against various types of noise without any error mitigation. We numerically demonstrate the advantage of NSQST over NNQST at learning the relative phases of three target quantum states of practical interest, as well as the advantage over direct shadow estimation. NSQST greatly extends the practical reach of NNQST and provides a novel route to effective quantum state tomography.
Related papers
- Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
deepfake technologies pose challenges to privacy, security, and information integrity.
This paper introduces a Quantum-Trained Convolutional Neural Network framework designed to enhance the detection of deepfake audio.
arXiv Detail & Related papers (2024-10-11T20:52:10Z) - Universal Quantum Tomography With Deep Neural Networks [0.0]
We present two neural networks based approach for both pure and mixed quantum state tomography.
We demonstrate that our proposed methods can achieve state-of-the-art results in reconstructing mixed quantum states from experimental data.
arXiv Detail & Related papers (2024-07-01T19:09:18Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - On how neural networks enhance quantum state tomography with constrained
measurements [3.1866319932300953]
We propose a deep neural networks based quantum state tomography (DNN-QST) approach, which are applied to three measurement-constrained cases.
DNN-QST exhibits a great potential to achieve high fidelity for quantum state tomography with limited measurement resources and can achieve improved estimation when tomographic measurements suffer from noise.
arXiv Detail & Related papers (2021-11-18T03:46:37Z) - Classification and reconstruction of optical quantum states with deep
neural networks [1.1470070927586016]
We apply deep-neural-network-based techniques to quantum state classification and reconstruction.
We demonstrate high classification accuracies and reconstruction fidelities, even in the presence of noise and with little data.
We present further demonstrations of our proposed [arXiv:2008.03240] QST technique with conditional generative adversarial networks (QST-CGAN)
arXiv Detail & Related papers (2020-12-03T18:58:16Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Attention-based Quantum Tomography [9.818293236208413]
"Attention-based Quantum Tomography" is a quantum state reconstruction using an attention mechanism-based generative network.
We show AQT can accurately reconstruct the density matrix associated with a noisy quantum state experimentally realized in an IBMQ quantum computer.
arXiv Detail & Related papers (2020-06-22T17:50:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.