Impact of non-Markovian evolution on characterizations of quantum
thermodynamics
- URL: http://arxiv.org/abs/2305.10622v2
- Date: Thu, 6 Jul 2023 08:18:57 GMT
- Title: Impact of non-Markovian evolution on characterizations of quantum
thermodynamics
- Authors: Devvrat Tiwari and Subhashish Banerjee
- Abstract summary: We study the impact of non-Markovian evolution on prominent characteristics of quantum thermodynamics, such as ergotropy and power.
A simple non-Markovian model of a qubit in a bosonic bath exhibiting non-Markovian amplitude damping evolution is considered.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Here we study the impact of non-Markovian evolution on prominent
characteristics of quantum thermodynamics, such as ergotropy and power. These
are benchmarked by the behavior of the quantum speed limit time. We make use of
both geometric-based, particularly quantum Fisher and Wigner-Yanase information
metric, and physical properties based-measures, particularly relative purity
measure and relative entropy of coherence measure, to compute the quantum speed
limit time. A simple non-Markovian model of a qubit in a bosonic bath
exhibiting non-Markovian amplitude damping evolution is considered, which, from
the quantum thermodynamic perspective with finite initial ergotropy, can be
envisaged as a quantum battery. To this end, we explore the connections between
the physical properties-based measures of quantum speed limit time and the
coherent component of ergotropy. The non-Markovian evolution is shown to impact
the recharging process of the quantum battery. Further, a connection between
the discharging-charging cycle of the quantum battery and the geometric
measures of quantum speed limit time is observed.
Related papers
- Improvement of Speed Limits: Quantum Effect on the Speed in Open Quantum Systems [0.0]
entropy-based speed limits can be used to estimate the minimum time for evolution.
We have combined the knowledge of the entropy-based speed limits with that of the resource theory of asymmetry.
arXiv Detail & Related papers (2024-10-15T13:40:24Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Coherence-enhanced single-qubit thermometry out of equilibrium [0.0]
We consider a finite-dimensional quantum system, employed as a quantum thermometer, in contact with a thermal inducing Markov bathian thermalization dynamics.
We prove that the sensitivity of the thermometer, quantified by the quantum Fisher information, is enhanced by the quantum coherence in its initial state.
arXiv Detail & Related papers (2024-05-23T11:11:01Z) - First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States [1.352425155225249]
We investigate a quantum walk on a ring represented by a directed triangle graph with complex edge weights.
The first hitting time statistics are recorded using unitary dynamics interspersed stroboscopically by measurements.
We conclude that, for the IBM quantum computer under study, the first hitting times of monitored quantum walks are resilient to noise.
arXiv Detail & Related papers (2024-02-24T15:59:25Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Variational Quantum Time Evolution without the Quantum Geometric Tensor [0.6562256987706128]
variational quantum time evolution is a promising candidate for near-term devices.
We show that our algorithm accurately reproduces the system dynamics at a fraction of the cost of standard variational quantum time evolution algorithms.
As an application of quantum imaginary-time evolution, we calculate a thermodynamic observable, the energy per site, of the Heisenberg model.
arXiv Detail & Related papers (2023-03-22T18:00:08Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Thermodynamics of Precision in Markovian Open Quantum Dynamics [0.0]
thermodynamic and kinetic uncertainty relations indicate trade-offs between the relative fluctuation of observables and thermodynamic quantities.
We derive finite-time lower bounds on the relative fluctuation of both dynamical observables and their first passage times for arbitrary initial states.
We find that the product of the relative fluctuation and entropy production or dynamical activity is enhanced by quantum coherence in a generic class of dissipative processes of systems with nondegenerate energy levels.
arXiv Detail & Related papers (2021-11-08T16:12:03Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.