論文の概要: Grammatical gender in Swedish is predictable using recurrent neural
networks
- arxiv url: http://arxiv.org/abs/2306.10869v1
- Date: Mon, 19 Jun 2023 11:42:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 17:57:26.592319
- Title: Grammatical gender in Swedish is predictable using recurrent neural
networks
- Title(参考訳): 再帰的ニューラルネットワークを用いたスウェーデン語の文法的性別予測
- Authors: Edvin Listo Zec, Olof Mogren
- Abstract要約: リカレントニューラルネットワーク(RNN)を用いてスウェーデンの名詞の文法的性別を高精度に予測できるという驚くべき事実を実証する。
RNNは文脈情報を使わずに、単語の生の文字列で動作する。
- 参考スコア(独自算出の注目度): 0.46775575662043395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The grammatical gender of Swedish nouns is a mystery. While there are few
rules that can indicate the gender with some certainty, it does in general not
depend on either meaning or the structure of the word. In this paper we
demonstrate the surprising fact that grammatical gender for Swedish nouns can
be predicted with high accuracy using a recurrent neural network (RNN) working
on the raw character sequence of the word, without using any contextual
information.
- Abstract(参考訳): スウェーデンの名詞の文法的性別はミステリーである。
ある程度の確実性をもって性別を示すことができる規則は少ないが、一般的には単語の意味や構造には依存しない。
本稿では,スウェーデン語名詞の文法的性別を,文脈情報を用いずに,単語の生の文字配列を扱うrecurrent neural network(rnn)を用いて高精度に予測できることを実証する。
関連論文リスト
- What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages [51.0349882045866]
本稿では,Large Language Models (LLMs) の文法的ジェンダーのレンズによるバイアスについて検討する。
様々な言語における形容詞を持つ名詞を記述するためのモデルを提案し,特に文法性のある言語に焦点を当てた。
単純な分類器は、偶然以上の名詞の性別を予測できるだけでなく、言語間の移動可能性も示せる。
論文 参考訳(メタデータ) (2024-07-12T22:10:16Z) - The Causal Influence of Grammatical Gender on Distributional Semantics [87.8027818528463]
言語間のジェンダー割り当てがどの程度意味を持つかは、言語学と認知科学における研究の活発な領域である。
我々は、名詞の文法的性別、意味、形容詞選択の間の相互作用を共同で表現する、新しい因果的グラフィカルモデルを提供する。
名詞の意味を制御した場合、文法的性別と形容詞的選択の関係は、ほぼゼロであり、無意味である。
論文 参考訳(メタデータ) (2023-11-30T13:58:13Z) - Why can neural language models solve next-word prediction? A
mathematical perspective [53.807657273043446]
本研究では,英語文の実例をモデル化するための形式言語群について検討する。
我々の証明は、ニューラルネットワークモデルにおける埋め込み層と完全に接続されたコンポーネントの異なる役割を強調します。
論文 参考訳(メタデータ) (2023-06-20T10:41:23Z) - MISGENDERED: Limits of Large Language Models in Understanding Pronouns [46.276320374441056]
我々は、英語のジェンダーニュートラル代名詞を正しく活用する能力について、人気言語モデルの評価を行った。
提案するMISGENDEREDは,大言語モデルが好む代名詞を正しく活用する能力を評価するためのフレームワークである。
論文 参考訳(メタデータ) (2023-06-06T18:27:52Z) - Measuring Gender Bias in Word Embeddings of Gendered Languages Requires
Disentangling Grammatical Gender Signals [3.0349733976070015]
単語埋め込みは、文法性のある言語における名詞とその文法性との関係を学習することを示した。
単語埋め込みから文法的ジェンダー信号を引き離すことは、セマンティック機械学習タスクの改善につながる可能性があることを示す。
論文 参考訳(メタデータ) (2022-06-03T17:11:00Z) - How Conservative are Language Models? Adapting to the Introduction of
Gender-Neutral Pronouns [0.15293427903448023]
スウェーデン語では、ジェンダーニュートラル代名詞は、人間の処理困難とは無関係であることを示す。
デンマーク語、英語、スウェーデン語のジェンダーニュートラル代名詞は、より難易度が高く、注意パターンが分散し、下流のパフォーマンスが悪化していることを示す。
論文 参考訳(メタデータ) (2022-04-11T09:42:02Z) - An exploration of the encoding of grammatical gender in word embeddings [0.6461556265872973]
単語埋め込みに基づく文法性の研究は、文法性がどのように決定されるかについての議論の洞察を与えることができる。
スウェーデン語、デンマーク語、オランダ語の埋め込みにおいて、文法的な性別がどのように符号化されているかには重複があることが判明した。
論文 参考訳(メタデータ) (2020-08-05T06:01:46Z) - Word embedding and neural network on grammatical gender -- A case study
of Swedish [0.5243215690489517]
言語における文法的ジェンダーに関する情報は、単語埋め込みモデルと人工ニューラルネットワークによってどのように捉えられるかを示す。
我々は言語的観点から計算モデルによる誤りを分析する。
論文 参考訳(メタデータ) (2020-07-28T13:50:17Z) - On the Relationships Between the Grammatical Genders of Inanimate Nouns
and Their Co-Occurring Adjectives and Verbs [57.015586483981885]
我々は6つの異なるジェンダー言語で大規模コーパスを使用する。
名詞の文法的性別とそれらの名詞を直接対象、間接対象、主語とする動詞との間に統計的に有意な関連性を見出した。
論文 参考訳(メタデータ) (2020-05-03T22:49:44Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。