論文の概要: Deep Learning of Dynamical System Parameters from Return Maps as Images
- arxiv url: http://arxiv.org/abs/2306.11258v1
- Date: Tue, 20 Jun 2023 03:23:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 15:52:37.788883
- Title: Deep Learning of Dynamical System Parameters from Return Maps as Images
- Title(参考訳): 画像としての戻りマップからの動的システムパラメータの深層学習
- Authors: Connor James Stephens, Emmanuel Blazquez
- Abstract要約: 本稿では,ディープラーニング技術を用いたシステム識別手法を提案する。
離散および連続時間力学系のパラメータを推定するために教師付き学習手法を用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel approach to system identification (SI) using deep learning
techniques. Focusing on parametric system identification (PSI), we use a
supervised learning approach for estimating the parameters of discrete and
continuous-time dynamical systems, irrespective of chaos. To accomplish this,
we transform collections of state-space trajectory observations into image-like
data to retain the state-space topology of trajectories from dynamical systems
and train convolutional neural networks to estimate the parameters of dynamical
systems from these images. We demonstrate that our approach can learn parameter
estimation functions for various dynamical systems, and by using training-time
data augmentation, we are able to learn estimation functions whose parameter
estimates are robust to changes in the sample fidelity of their inputs. Once
trained, these estimation models return parameter estimations for new systems
with negligible time and computation costs.
- Abstract(参考訳): 本稿では,ディープラーニング技術を用いたシステム識別(SI)の新しい手法を提案する。
パラメトリックシステム同定(PSI)に着目し,カオスに関係なく,離散的・連続的な動的システムのパラメータを推定するために教師付き学習手法を用いる。
これを達成するために, 状態空間軌道観測のコレクションを画像状データに変換し, 動的系からの軌道の状態空間トポロジを保持し, 畳み込みニューラルネットワークを訓練し, それらの画像から動的系のパラメータを推定する。
本研究では, 各種力学系のパラメータ推定関数を学習できることを実証し, トレーニング時間データ拡張を用いて, パラメータ推定が入力のサンプル忠実度の変化に対して頑健な推定関数を学習できることを示した。
訓練後、これらの推定モデルは、無視可能な時間と計算コストで新しいシステムのパラメータ推定を返す。
関連論文リスト
- Machine-learning parameter tracking with partial state observation [0.0]
複雑で非線形な力学系は、時間とともに変化するパラメータ、状態推定、予測、制御といったタスクに不可欠な正確な追跡を含むことが多い。
リアルタイムに部分状態観測から時間変化パラメータを正確に追跡する,モデルフリーで完全なデータ駆動型フレームワークを開発した。
低次元および高次元のマルコフ系および非マルコフ系非線形力学系は、機械学習に基づくパラメータ追跡フレームワークのパワーを示すために用いられる。
論文 参考訳(メタデータ) (2023-11-15T17:39:25Z) - Learning Nonautonomous Systems via Dynamic Mode Decomposition [0.0]
動的モード分解(DMD)に基づく時間依存入力を持つ未知の非線形力学系に対するデータ駆動学習手法を提案する。
時間依存クープマン演算子を非正則系に近似することの難しさを回避するため、修正されたシステムは元の非正則系の近似として用いられる。
論文 参考訳(メタデータ) (2023-06-27T16:58:26Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Embed and Emulate: Learning to estimate parameters of dynamical systems
with uncertainty quantification [11.353411236854582]
本稿では,高次元力学系の不確実性を考慮したパラメータ推定のための学習エミュレータについて検討する。
私たちのタスクは、基礎となるパラメータの可能性のある値の範囲を正確に見積もることです。
結合した396次元のマルチスケールロレンツ96系において,本手法は典型的なパラメータ推定法よりも優れていた。
論文 参考訳(メタデータ) (2022-11-03T01:59:20Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated Learning(FL)は、モバイルエッジシステムに適用可能な、新興の機械学習手法である。
このような条件下での勾配降下(SGD)への走行は,大域的な集約プロセスに運動量的な項を加えるとみなすことができる。
論文 参考訳(メタデータ) (2022-02-17T02:01:37Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
各種グレーボックス設定における動的モデルの学習方法であるNeural Dynamical Systems (NDS)を紹介する。
NDSはニューラルネットワークを使用してシステムの自由パラメータを推定し、残余項を予測し、将来状態を予測するために時間とともに数値的に統合する。
論文 参考訳(メタデータ) (2020-06-23T00:50:48Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。