論文の概要: Time and State Dependent Neural Delay Differential Equations
- arxiv url: http://arxiv.org/abs/2306.14545v2
- Date: Thu, 26 Sep 2024 08:29:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 14:51:04.169545
- Title: Time and State Dependent Neural Delay Differential Equations
- Title(参考訳): 時間と状態依存型ニューラル遅延微分方程式
- Authors: Thibault Monsel, Onofrio Semeraro, Lionel Mathelin, Guillaume Charpiat,
- Abstract要約: 遅れた用語は、物理学や工学から医学、経済学まで、幅広い種類の問題の統治方程式で遭遇する。
複数および状態依存の遅延と時間依存の遅延をモデル化できるフレームワークであるNeural State-Dependent DDEを導入する。
提案手法は競争力があり,様々な遅延力学系における他の連続クラスモデルよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.5249805590164901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discontinuities and delayed terms are encountered in the governing equations of a large class of problems ranging from physics and engineering to medicine and economics. These systems cannot be properly modelled and simulated with standard Ordinary Differential Equations (ODE), or data-driven approximations such as Neural Ordinary Differential Equations (NODE). To circumvent this issue, latent variables are typically introduced to solve the dynamics of the system in a higher dimensional space and obtain the solution as a projection to the original space. However, this solution lacks physical interpretability. In contrast, Delay Differential Equations (DDEs), and their data-driven approximated counterparts, naturally appear as good candidates to characterize such systems. In this work we revisit the recently proposed Neural DDE by introducing Neural State-Dependent DDE (SDDDE), a general and flexible framework that can model multiple and state- and time-dependent delays. We show that our method is competitive and outperforms other continuous-class models on a wide variety of delayed dynamical systems. Code is available at the repository \href{https://github.com/thibmonsel/Time-and-State-Dependent-Neural-Delay-Differential-Equations}{here}.
- Abstract(参考訳): 物理学や工学から医学、経済学まで、幅広い種類の問題の統治方程式において、不連続性と遅延項が遭遇する。
これらのシステムは、標準常微分方程式(ODE)やニューラル常微分方程式(NODE)のようなデータ駆動近似で適切にモデル化およびシミュレーションすることはできない。
この問題を回避するために、潜伏変数は一般に高次元空間における系の力学を解き、元の空間への射影として解を得るために導入される。
しかし、この解は物理的解釈可能性に欠ける。
対照的に、DDE(Delay Differential Equations)とそのデータ駆動の近似方程式は、このようなシステムを特徴づける良い候補として自然に現れる。
本稿では,複数および状態依存遅延をモデル化可能な汎用かつ柔軟なフレームワークであるNeural State-Dependent DDE(SDDDE)を導入することで,最近提案されたNeural DDEを再考する。
提案手法は競争力があり,様々な遅延力学系における他の連続クラスモデルよりも優れていることを示す。
コードはリポジトリ \href{https://github.com/thibmonsel/Time-and-State-Dependent-Neural-Delay-Differential-Equations}{here} で公開されている。
関連論文リスト
- A Deep Neural Network Framework for Solving Forward and Inverse Problems in Delay Differential Equations [12.888147363070749]
ディープニューラルネットワーク(DNN)に基づく遅延微分方程式(DDE)の統合フレームワークを提案する。
このフレームワークは、DDEの多様な要件を満たすために遅延微分方程式をニューラルネットワークに埋め込むことができる。
逆問題に対処する際、NDDEフレームワークは観測データを利用して単一の遅延パラメータや複数の遅延パラメータを正確に推定することができる。
論文 参考訳(メタデータ) (2024-08-17T13:41:34Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - NeuralPDE: Modelling Dynamical Systems from Data [0.44259821861543996]
本稿では、畳み込みニューラルネットワーク(CNN)と微分可能なODEソルバを組み合わせて動的システムをモデル化するモデルであるNeuralPDEを提案する。
標準PDEソルバで使用されるラインの手法は、CNNが任意のPDEダイナミクスをパラメトリズする自然な選択となる畳み込みを用いて表現できることを示す。
我々のモデルは、PDEの管理に関する事前の知識を必要とせずに、あらゆるデータに適用することができる。
論文 参考訳(メタデータ) (2021-11-15T10:59:52Z) - Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE [1.1897857181479061]
本研究では、物理システムの隠れた力学を学習できる畳み込みニューラルネットワーク(CNN)の変種を提案する。
画像や時系列などの物理系を複数の層からなるシステムとして考えるのではなく、微分方程式(DE)の形でシステムをモデル化することができる。
論文 参考訳(メタデータ) (2021-10-30T21:45:00Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Neural SDEs as Infinite-Dimensional GANs [18.07683058213448]
我々は、SDE の適合に対する現在の古典的アプローチが、(ワッサーシュタイン) GAN の特別な場合としてアプローチされることを示した。
我々は(現代の機械学習における)連続時間生成時系列モデルとしてニューラルSDEを得る。
論文 参考訳(メタデータ) (2021-02-06T19:59:15Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Time Dependence in Non-Autonomous Neural ODEs [74.78386661760662]
時変重みを持つニューラルODEの新しいファミリーを提案する。
我々は、速度と表現能力の両面で、従来のニューラルODEの変形よりも優れていた。
論文 参考訳(メタデータ) (2020-05-05T01:41:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。