論文の概要: Neural SDEs as Infinite-Dimensional GANs
- arxiv url: http://arxiv.org/abs/2102.03657v1
- Date: Sat, 6 Feb 2021 19:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 15:36:49.619064
- Title: Neural SDEs as Infinite-Dimensional GANs
- Title(参考訳): 無限次元GANとしてのニューラルSDE
- Authors: Patrick Kidger and James Foster and Xuechen Li and Harald Oberhauser
and Terry Lyons
- Abstract要約: 我々は、SDE の適合に対する現在の古典的アプローチが、(ワッサーシュタイン) GAN の特別な場合としてアプローチされることを示した。
我々は(現代の機械学習における)連続時間生成時系列モデルとしてニューラルSDEを得る。
- 参考スコア(独自算出の注目度): 18.07683058213448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic differential equations (SDEs) are a staple of mathematical
modelling of temporal dynamics. However, a fundamental limitation has been that
such models have typically been relatively inflexible, which recent work
introducing Neural SDEs has sought to solve. Here, we show that the current
classical approach to fitting SDEs may be approached as a special case of
(Wasserstein) GANs, and in doing so the neural and classical regimes may be
brought together. The input noise is Brownian motion, the output samples are
time-evolving paths produced by a numerical solver, and by parameterising a
discriminator as a Neural Controlled Differential Equation (CDE), we obtain
Neural SDEs as (in modern machine learning parlance) continuous-time generative
time series models. Unlike previous work on this problem, this is a direct
extension of the classical approach without reference to either prespecified
statistics or density functions. Arbitrary drift and diffusions are admissible,
so as the Wasserstein loss has a unique global minima, in the infinite data
limit \textit{any} SDE may be learnt.
- Abstract(参考訳): 確率微分方程式 (SDEs) は時間力学の数学的モデリングの基礎である。
しかし、そのようなモデルは通常比較的柔軟であり、ニューラルSDEを導入した最近の研究は解決を試みている。
ここでは、SDE の適合に対する現在の古典的アプローチが(ワッサーシュタイン) GAN の特別な場合としてアプローチされる可能性を示し、その場合、ニューラルネットワークと古典的体制をまとめることができる。
入力ノイズはブラウン運動であり、出力サンプルは数値解法によって生成される時間進化経路であり、識別器をニューラル制御微分方程式(CDE)としてパラメータ化することにより、(現代の機械学習における)連続時間生成時系列モデルとしてニューラルSDEを得る。
この問題に関する以前の研究とは異なり、これは前述した統計や密度関数に言及せずに古典的アプローチの直接的な拡張である。
任意漂流と拡散は許容可能であるので、ワッサーシュタインの損失は固有のグローバルミニマを持ち、無限データ極限 \textit{any} SDE で学習することができる。
関連論文リスト
- Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
我々はニューラル遅延微分方程式 (Neural Delay Differential Equations, NDDEs) という,遅延を伴う連続深度ニューラルネットワークの新しいクラスを提案する。
NODE と比較して、NDDE はより強い非線形表現能力を持つ。
我々は、合成されたデータだけでなく、よく知られた画像データセットであるCIFAR10に対しても、損失の低減と精度の向上を実現している。
論文 参考訳(メタデータ) (2023-04-11T16:09:28Z) - LordNet: Learning to Solve Parametric Partial Differential Equations
without Simulated Data [63.55861160124684]
本稿では,離散化されたPDEによって構築された平均2乗残差(MSR)損失から,ニューラルネットワークが直接物理を学習する一般データ自由パラダイムを提案する。
具体的には,低ランク分解ネットワーク(LordNet)を提案する。
Poisson方程式とNavier-Stokes方程式を解く実験は、MSR損失による物理的制約がニューラルネットワークの精度と能力を向上させることを実証している。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - NeuralPDE: Modelling Dynamical Systems from Data [0.44259821861543996]
本稿では、畳み込みニューラルネットワーク(CNN)と微分可能なODEソルバを組み合わせて動的システムをモデル化するモデルであるNeuralPDEを提案する。
標準PDEソルバで使用されるラインの手法は、CNNが任意のPDEダイナミクスをパラメトリズする自然な選択となる畳み込みを用いて表現できることを示す。
我々のモデルは、PDEの管理に関する事前の知識を必要とせずに、あらゆるデータに適用することができる。
論文 参考訳(メタデータ) (2021-11-15T10:59:52Z) - Neural Stochastic Partial Differential Equations [1.2183405753834562]
物理に着想を得たニューラルアーキテクチャの2つの重要なクラスの拡張を提供するニューラルSPDEモデルを導入する。
一方、一般的な神経-通常、制御され、粗い-微分方程式モデルをすべて拡張し、入ってくる情報を処理することができる。
一方、関数空間間のマッピングをモデル化するニューラルネットワークの最近の一般化であるNeural Operatorsを拡張して、複雑なSPDEソリューション演算子を学習することができる。
論文 参考訳(メタデータ) (2021-10-19T20:35:37Z) - Learning stochastic dynamical systems with neural networks mimicking the
Euler-Maruyama scheme [14.436723124352817]
本稿では,SDEのパラメータを組み込みのSDE統合方式でニューラルネットワークで表現するデータ駆動手法を提案する。
このアルゴリズムは、幾何学的ブラウン運動とロレンツ-63モデルのバージョンに適用される。
論文 参考訳(メタデータ) (2021-05-18T11:41:34Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Neural Delay Differential Equations [9.077775405204347]
ニューラル遅延微分方程式 (N Neural Delay Differential Equations, NDDEs) と呼ばれる遅延を持つ連続深層ニューラルネットワークの新しいクラスを提案する。
対応する勾配を計算するために,随伴感度法を用いて随伴の遅延ダイナミクスを得る。
この結果から,動的システムの要素をネットワーク設計に適切に表現することは,ネットワーク性能の促進に真に有益であることが判明した。
論文 参考訳(メタデータ) (2021-02-22T06:53:51Z) - Time Dependence in Non-Autonomous Neural ODEs [74.78386661760662]
時変重みを持つニューラルODEの新しいファミリーを提案する。
我々は、速度と表現能力の両面で、従来のニューラルODEの変形よりも優れていた。
論文 参考訳(メタデータ) (2020-05-05T01:41:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。