論文の概要: Spatiotemporal Besov Priors for Bayesian Inverse Problems
- arxiv url: http://arxiv.org/abs/2306.16378v2
- Date: Tue, 26 Mar 2024 12:29:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:30:07.808398
- Title: Spatiotemporal Besov Priors for Bayesian Inverse Problems
- Title(参考訳): ベイズ逆問題に対する時空間ベソフ前処理
- Authors: Shiwei Lan, Mirjeta Pasha, Shuyi Li, Weining Shen,
- Abstract要約: データサイエンスにおける多くの逆問題には、コンピュータ化された時間依存オブジェクトの列に由来する解を必要とする。
ランダムな係数を持つウェーブレット展開によって定義されるBesmoothsov Process (BP) がより適切な解として登場した。
- 参考スコア(独自算出の注目度): 10.521038958248846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fast development in science and technology has driven the need for proper statistical tools to capture special data features such as abrupt changes or sharp contrast. Many inverse problems in data science require spatiotemporal solutions derived from a sequence of time-dependent objects with these spatial features, e.g., dynamic reconstruction of computerized tomography (CT) images with edges. Conventional methods based on Gaussian processes (GP) often fall short in providing satisfactory solutions since they tend to offer over-smooth priors. Recently, the Besov process (BP), defined by wavelet expansions with random coefficients, has emerged as a more suitable prior for Bayesian inverse problems of this nature. While BP excels in handling spatial inhomogeneity, it does not automatically incorporate temporal correlation inherited in the dynamically changing objects. In this paper, we generalize BP to a novel spatiotemporal Besov process (STBP) by replacing the random coefficients in the series expansion with stochastic time functions as Q-exponential process (Q-EP) which governs the temporal correlation structure. We thoroughly investigate the mathematical and statistical properties of STBP. A white-noise representation of STBP is also proposed to facilitate the inference. Simulations, two limited-angle CT reconstruction examples and a highly non-linear inverse problem involving Navier-Stokes equation are used to demonstrate the advantage of the proposed STBP in preserving spatial features while accounting for temporal changes compared with the classic STGP and a time-uncorrelated approach.
- Abstract(参考訳): 科学と技術の急速な発展は、急激な変化や鋭いコントラストといった特別なデータ特徴を捉えるための適切な統計ツールの必要性を招いた。
データサイエンスにおける多くの逆問題には、これらの空間的特徴を持つ時間依存オブジェクトの列から導出される時空間解、例えば、エッジを持つコンピュータ断層撮影(CT)画像の動的再構成が必要である。
ガウス過程(GP)に基づく従来の手法は、過度に滑らかな先行を与える傾向にあるため、満足な解を提供するのに不足することが多い。
近年、ランダムな係数を持つウェーブレット展開によって定義されるベソフ過程(BP)は、この性質のベイズ逆問題に対してより適当であると考えられている。
BPは空間的不均一性を扱うのに優れているが、動的に変化する物体に受け継がれた時間的相関を自動的に組み込むわけではない。
本稿では,時間的相関構造を管理するQ-exponential process(Q-EP)として,時系列展開におけるランダムな係数を確率的時間関数に置き換えることで,BPを新しい時空間ベソフ過程(STBP)に一般化する。
本稿ではSTBPの数学的および統計的特性について詳しく検討する。
推論を容易にするためにSTBPの白色雑音表現も提案されている。
シミュレーション,2つのリミテッドアングルCT再構成例,およびNavier-Stokes方程式を含む非線形逆問題を用いて,従来のSTGPや時間的非相関アプローチと比較して時間的変化を考慮しつつ,空間的特徴の保存において提案したSTBPの利点を実証する。
関連論文リスト
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
非定常PGDSは、基礎となる遷移行列が時間とともに進化できるように提案されている。
後続シミュレーションを行うために, 完全共役かつ効率的なギブスサンプリング装置を開発した。
実験により,提案した非定常PGDSは,関連するモデルと比較して予測性能が向上することを示した。
論文 参考訳(メタデータ) (2024-02-26T04:39:01Z) - Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping [0.0]
多くの分野にわたる時間データの拡散と普遍性は、類似性、分類、クラスタリング手法への関心を喚起した。
ユークリッドのような伝統的な距離測度は、時間に依存したデータの性質のため適していない。
この論文は、パラメトリックおよび微分同相のワープ変換を用いる新しい弾性アライメント法を提案する。
論文 参考訳(メタデータ) (2023-09-25T10:51:47Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Event-Triggered Time-Varying Bayesian Optimization [47.30677525394649]
目的関数の変化を検知し、データセットをリセットするまで、最適化問題を静的に扱うイベントトリガー付きアルゴリズムを提案する。
これにより、アルゴリズムは正確な事前知識を必要とせずに、オンラインで時間変化を実現することができる。
時間的変化を正確に知ることなく、適応リセットの残差を導出し、ET-GP-UCBが合成データと実世界のデータの両方で最先端のアルゴリズムより優れていることを示す数値実験を行った。
論文 参考訳(メタデータ) (2022-08-23T07:50:52Z) - Spatio-Temporal Variational Gaussian Processes [26.60276485130467]
時空間フィルタリングと自然変動推論を組み合わせたガウス過程推論にスケーラブルなアプローチを導入する。
還元された誘導点集合上で状態空間モデルを構成するスパース近似を導出する。
分離可能なマルコフカーネルの場合、完全スパースケースは標準変分GPを正確に回復する。
論文 参考訳(メタデータ) (2021-11-02T16:53:31Z) - Scalable Spatiotemporally Varying Coefficient Modelling with Bayesian Kernelized Tensor Regression [17.158289775348063]
カーネル化されたテンソル回帰(BKTR)は、低ランクの時間構造を持つモデリングプロセスに対する新しいスケーラブルなアプローチと考えられる。
そこで本研究では,BKTRのモデル推定と推定において,BKTRの優れた性能と効率性を確認した。
論文 参考訳(メタデータ) (2021-08-31T19:22:23Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
グラフニューラルネットワークは、十分な高品質のトレーニングデータがないために、現実のシナリオでは実用的ではないかもしれない。
我々は時間的データを解析するための数学的に設計された新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2020-12-06T19:49:55Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - On the Convergence Rate of Projected Gradient Descent for a
Back-Projection based Objective [58.33065918353532]
我々は、最小二乗(LS)の代替として、バックプロジェクションに基づく忠実度項を考える。
LS項ではなくBP項を用いることで最適化アルゴリズムの繰り返しを少なくすることを示す。
論文 参考訳(メタデータ) (2020-05-03T00:58:23Z) - Modeling of Spatio-Temporal Hawkes Processes with Randomized Kernels [15.556686221927501]
犯罪予測や交通予測など,イベントプロセスのダイナミクスを推測する実践的応用が盛んである。
イベント発生間の励起を捕捉する能力によって一般的に使用される,社会的時間的ホークスプロセスについて紹介する。
空間カーネルの計算をランダム化変換と勾配降下で置き換え,その過程を学習する。
論文 参考訳(メタデータ) (2020-03-07T22:21:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。