論文の概要: Applying human-centered AI in developing effective human-AI teaming: A
perspective of human-AI joint cognitive systems
- arxiv url: http://arxiv.org/abs/2307.03913v3
- Date: Sat, 15 Jul 2023 15:38:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 19:44:28.888083
- Title: Applying human-centered AI in developing effective human-AI teaming: A
perspective of human-AI joint cognitive systems
- Title(参考訳): 効果的な人間-AIコラボレーション開発における人間中心AIの適用:人間-AI共同認知システムの観点から
- Authors: Wei Xu, Zaifeng Gao
- Abstract要約: 研究と応用は、AIシステムを開発するための新しいパラダイムとして、HAT(Human-AI Teaming)を使用している。
我々は,人間とAIの協調認知システム(HAIJCS)の概念的枠組みについて詳しく検討する。
本稿では,HATを表現・実装するためのヒューマンAI共同認知システム(HAIJCS)の概念的枠組みを提案する。
- 参考スコア(独自算出の注目度): 11.297065069875625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research and application have used human-AI teaming (HAT) as a new paradigm
to develop AI systems. HAT recognizes that AI will function as a teammate
instead of simply a tool in collaboration with humans. Effective human-AI teams
need to be capable of taking advantage of the unique abilities of both humans
and AI while overcoming the known challenges and limitations of each member,
augmenting human capabilities, and raising joint performance beyond that of
either entity. The National AI Research and Strategic Plan 2023 update has
recognized that research programs focusing primarily on the independent
performance of AI systems generally fail to consider the functionality that AI
must provide within the context of dynamic, adaptive, and collaborative teams
and calls for further research on human-AI teaming and collaboration. However,
there has been debate about whether AI can work as a teammate with humans. The
primary concern is that adopting the "teaming" paradigm contradicts the
human-centered AI (HCAI) approach, resulting in humans losing control of AI
systems. This article further analyzes the HAT paradigm and the debates.
Specifically, we elaborate on our proposed conceptual framework of human-AI
joint cognitive systems (HAIJCS) and apply it to represent HAT under the HCAI
umbrella. We believe that HAIJCS may help adopt HAI while enabling HCAI. The
implications and future work for HAIJCS are also discussed.
Insights: AI has led to the emergence of a new form of human-machine
relationship: human-AI teaming (HAT), a paradigmatic shift in human-AI systems;
We must follow a human-centered AI (HCAI) approach when applying HAT as a new
design paradigm; We propose a conceptual framework of human-AI joint cognitive
systems (HAIJCS) to represent and implement HAT for developing effective
human-AI teaming
- Abstract(参考訳): 研究と応用は、AIシステムを開発するための新しいパラダイムとして、HAT(Human-AI Teaming)を使用している。
HATは、AIが単なるツールではなく、チームメイトとして機能することを認識している。
効果的な人間-AIチームは、各メンバの既知の課題と制限を克服しつつ、人間とAIの両方のユニークな能力を活用でき、人間の能力を増強し、どちらのエンティティよりも共同パフォーマンスを高める必要がある。
National AI Research and Strategic Plan 2023アップデートは、AIシステムの独立したパフォーマンスに重点を置く研究プログラムが、動的、適応的、協力的なチームの中でAIが提供しなければならない機能を考慮するのに失敗し、人間とAIのコラボレーションとコラボレーションに関するさらなる研究を求めることを認識している。
しかし、AIが人間とチームメイトとして機能するかどうかについては議論がある。
第一の懸念は、"チーム"パラダイムを採用することは、人間中心のAI(HCAI)アプローチと矛盾するため、AIシステムのコントロールを失うことである。
本稿では、HATパラダイムと議論をさらに分析する。
具体的には,人間とAIの協調認知システム(HAIJCS)の概念枠組みを詳述し,HCAI傘の下でのHAT表現に適用する。
HAIJCSはHCAIを有効化しながらHAIを採用するのに役立つと考えている。
HAIJCSの意義と今後の課題についても論じる。
洞察:aiは新しい形の人間-機械関係の出現につながった:人間-aiチーム(hat)、人間-aiシステムにおけるパラダイムシフト、新しいデザインパラダイムとして帽子を適用する際に人間中心のai(hcai)アプローチに従うこと、効果的な人間-aiチームを作るための帽子を表現・実装するための人間-ai合同認知システム(haijcs)の概念的枠組みを提案する。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
我々は、人間との対話から学ぶ学生に似た、AIを学習パートナーとして見ることへのシフトを提唱する。
我々は「第三の心」が人間とAIの協力関係を通して生まれることを示唆する。
論文 参考訳(メタデータ) (2024-10-07T19:19:39Z) - The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction [0.0]
ますます多くの分野におけるAIの利用は、長いプロセスの最新のイテレーションである。
異なる状況でAIをどのように使うべきかを決定する方法が緊急に必要である。
論文 参考訳(メタデータ) (2024-08-23T01:00:32Z) - Problem Solving Through Human-AI Preference-Based Cooperation [74.39233146428492]
我々は,人間-AI共同構築フレームワークであるHAI-Co2を提案する。
我々は、HAI-Co2を形式化し、それが直面する困難なオープンリサーチ問題について議論する。
本稿では,HAI-Co2のケーススタディと,モノリシックな生成型AIモデルとの比較による有効性を示す。
論文 参考訳(メタデータ) (2024-08-14T11:06:57Z) - On the Utility of Accounting for Human Beliefs about AI Intention in Human-AI Collaboration [9.371527955300323]
我々は、人間がどのように解釈し、AIパートナーの意図を判断するかを捉える人間の信念のモデルを開発する。
私たちは、人間と対話するための戦略を考案する際に、人間の行動と人間の信念の両方を取り入れたAIエージェントを作成します。
論文 参考訳(メタデータ) (2024-06-10T06:39:37Z) - Intent-aligned AI systems deplete human agency: the need for agency
foundations research in AI safety [2.3572498744567127]
人間の意図の一致は、安全なAIシステムには不十分である、と我々は主張する。
我々は、人類の長期的機関の保存がより堅牢な標準であると論じている。
論文 参考訳(メタデータ) (2023-05-30T17:14:01Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
HCAI(Human-Centered AI)は、さまざまなヒューマンタスクをサポートするAI技術の設計と実装を目的とした研究活動である。
データサイエンス(DS)に関する一連の研究プロジェクトを使ってHCAIにどのようにアプローチするかをケーススタディとして紹介する。
論文 参考訳(メタデータ) (2021-10-03T21:47:13Z) - From Human-Computer Interaction to Human-AI Interaction: New Challenges
and Opportunities for Enabling Human-Centered AI [7.3800748017024755]
我々は、AI技術の特徴と非AIコンピューティングシステムとAIシステムの違いに焦点を当てる。
人とAIの相互作用(HAII)の研究と応用を学際的なコラボレーションとして推進します。
論文 参考訳(メタデータ) (2021-05-12T04:30:45Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。