論文の概要: Graph Automorphism Group Equivariant Neural Networks
- arxiv url: http://arxiv.org/abs/2307.07810v1
- Date: Sat, 15 Jul 2023 14:19:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 17:49:07.904275
- Title: Graph Automorphism Group Equivariant Neural Networks
- Title(参考訳): グラフ自己同型群同変ニューラルネットワーク
- Authors: Edward Pearce-Crump
- Abstract要約: 学習可能で線型な$textrmAut(G)$-equivariant 層関数に対して、そのようなテンソルパワー空間間の行列の分散集合が $mathbbRn$ の標準基底で見つかる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For any graph $G$ having $n$ vertices and its automorphism group
$\textrm{Aut}(G)$, we provide a full characterisation of all of the possible
$\textrm{Aut}(G)$-equivariant neural networks whose layers are some tensor
power of $\mathbb{R}^{n}$. In particular, we find a spanning set of matrices
for the learnable, linear, $\textrm{Aut}(G)$-equivariant layer functions
between such tensor power spaces in the standard basis of $\mathbb{R}^{n}$.
- Abstract(参考訳): n$頂点を持つ任意のグラフ$g$とその自己同型群$\textrm{aut}(g)$に対して、任意の層が$\mathbb{r}^{n}$のテンソルパワーを持つ$\textrm{aut}(g)$-同変ニューラルネットワークの完全な特徴付けを提供する。
特に、学習可能で線型な$\textrm{Aut}(G)$-equivariant layer function に対して、標準的な $\mathbb{R}^{n}$ 基底においてそのようなテンソルパワー空間間での行列の分散集合が見つかる。
関連論文リスト
- Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の等方的ガウスデータの下で勾配降下学習の問題を考察する。
SGDアルゴリズムで最適化された2層ニューラルネットワークは、サンプル付き任意のリンク関数の$f_*$を学習し、実行時の複雑さは$n asymp T asymp C(q) cdot dであることを示す。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - Lie Group Decompositions for Equivariant Neural Networks [12.139222986297261]
コンボリューションカーネルをパラメータ化してアフィン変換に対する同変モデルを構築する方法を示す。
我々は,ベンチマークアフィン不変分類タスクにおいて,モデルのロバスト性と分布外一般化能力を評価する。
論文 参考訳(メタデータ) (2023-10-17T16:04:33Z) - Geometric Clifford Algebra Networks [53.456211342585824]
本稿では,動的システムのモデリングのためのGeometric Clifford Algebra Networks (GCANs)を提案する。
GCANは幾何学的(クリフォード)代数を用いた対称性群変換に基づいている。
論文 参考訳(メタデータ) (2023-02-13T18:48:33Z) - How Jellyfish Characterise Alternating Group Equivariant Neural Networks [0.0]
学習可能で線型で$A_n$-equivariantな層関数の基底は、そのようなテンソルパワー空間の間の$mathbbRn$の標準基底である。
また,本手法が局所対称性に同値なニューラルネットワークの構築にどのように一般化するかについても述べる。
論文 参考訳(メタデータ) (2023-01-24T17:39:10Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
ラベル付きデータセットに存在する連続した対称性群の検出と同定のためのディープラーニングアルゴリズムを設計する。
完全に接続されたニューラルネットワークを用いて、変換対称性と対応するジェネレータをモデル化する。
また,Lie群とその性質の数学的研究に機械学習アプローチを使うための扉を開く。
論文 参考訳(メタデータ) (2023-01-13T16:25:25Z) - Brauer's Group Equivariant Neural Networks [0.0]
我々は、層が$mathbbRn$のテンソルパワーを持つような全ての可能な群同変ニューラルネットワークの完全な特徴付けを提供する。
そのようなテンソルパワー空間間の学習可能、線型、等変層関数に対する行列の分散集合を求める。
論文 参考訳(メタデータ) (2022-12-16T18:08:51Z) - Quantum isomorphism of graphs from association schemes [0.0]
同じ数の頂点上の任意の2つのアダマールグラフが量子同型であることを示す。
これは、ある関連スキームから生じるグラフの量子同型を示すより一般的なレシピから従う。
論文 参考訳(メタデータ) (2022-09-10T03:22:28Z) - Algebraic Aspects of Boundaries in the Kitaev Quantum Double Model [77.34726150561087]
我々は、Ksubseteq G$ の部分群に基づく境界の体系的な扱いを、バルクの Kokuev 量子倍 D(G)$ モデルで提供する。
境界サイトは$*$-subalgebra $Xisubseteq D(G)$の表現であり、その構造を強い$*$-準ホップ代数として説明する。
治療の応用として、水平方向の$K=G$と垂直方向の$K=e$に基づく境界付きパッチを調査し、量子コンピュータでどのように使用できるかを示す。
論文 参考訳(メタデータ) (2022-08-12T15:05:07Z) - Geometric Deep Learning and Equivariant Neural Networks [0.9381376621526817]
幾何学的深層学習の数学的基礎を調査し,群同変とゲージ同変ニューラルネットワークに着目した。
任意の多様体 $mathcalM$ 上のゲージ同変畳み込みニューラルネットワークを、構造群 $K$ の主バンドルと、関連するベクトルバンドルの切断間の同変写像を用いて開発する。
セマンティックセグメンテーションやオブジェクト検出ネットワークなど,このフォーマリズムのいくつかの応用を解析する。
論文 参考訳(メタデータ) (2021-05-28T15:41:52Z) - A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups [115.58550697886987]
行列群の同変層を解くための完全一般的なアルゴリズムを提供する。
他作品からのソリューションを特殊ケースとして回収するだけでなく、これまで取り組んだことのない複数のグループと等価な多層パーセプトロンを構築します。
提案手法は, 粒子物理学および力学系への応用により, 非同変基底線より優れる。
論文 参考訳(メタデータ) (2021-04-19T17:21:54Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
直交群 $O(d)$ 上の幾何駆動最適化アルゴリズムの新しいクラスを示す。
提案手法は,深層,畳み込み,反復的なニューラルネットワーク,強化学習,フロー,メトリック学習など,機械学習のさまざまな分野に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-30T15:37:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。