論文の概要: Analyzing sports commentary in order to automatically recognize events
and extract insights
- arxiv url: http://arxiv.org/abs/2307.10303v1
- Date: Tue, 18 Jul 2023 18:51:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 16:19:06.748817
- Title: Analyzing sports commentary in order to automatically recognize events
and extract insights
- Title(参考訳): イベントの自動認識と洞察抽出のためのスポーツ解説の分析
- Authors: Yanis Miraoui
- Abstract要約: 本研究の目的は,様々な情報源からスポーツ解説を解析し,これらの主要なアクションを異なるカテゴリに分類することで洞察を抽出することである。
また、感情分析がこれらの主要な行動を検出するのに役立つかどうかについても検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we carefully investigate how we can use multiple different
Natural Language Processing techniques and methods in order to automatically
recognize the main actions in sports events. We aim to extract insights by
analyzing live sport commentaries from different sources and by classifying
these major actions into different categories. We also study if sentiment
analysis could help detect these main actions.
- Abstract(参考訳): 本稿では,スポーツイベントの主な動作を自動的に認識するために,複数の異なる自然言語処理技術や手法をどのように利用できるか,慎重に検討する。
我々は,ライブスポーツのコメンタリーを異なるソースから分析し,これらの主要なアクションを異なるカテゴリに分類することにより,洞察を抽出することを目的とする。
また、感情分析がこれらの主要な行動を検出するのに役立つかどうかについても検討した。
関連論文リスト
- Deep learning for action spotting in association football videos [64.10841325879996]
SoccerNetイニシアチブは毎年の課題を組織し、世界中の参加者が最先端のパフォーマンスを達成するために競う。
本稿では,スポーツにおけるアクションスポッティングの歴史を,2018年の課題の創出から,現在の研究・スポーツ産業における役割まで遡る。
論文 参考訳(メタデータ) (2024-10-02T07:56:15Z) - OSL-ActionSpotting: A Unified Library for Action Spotting in Sports Videos [56.393522913188704]
我々は,スポーツビデオ分析における研究と応用の合理化のために,さまざまなアクションスポッティングアルゴリズムを統合するPythonライブラリであるOSL-ActionSpottingを紹介する。
我々はOSL-ActionSpottingに3つの基本アクションスポッティング手法を統合することに成功した。
論文 参考訳(メタデータ) (2024-07-01T13:17:37Z) - Survey of Action Recognition, Spotting and Spatio-Temporal Localization
in Soccer -- Current Trends and Research Perspectives [0.7673339435080445]
サッカーにおけるアクションシーンの理解は、ゲームの複雑でダイナミックな性質のために難しい課題である。
この記事では、ディープラーニング技術と従来の手法を活用した最新の最先端の手法についてレビューする。
マルチモーダル法は、ビデオやオーディオデータなどの複数のソースからの情報を統合し、また、様々な方法で一つのソースを表すものも統合する。
論文 参考訳(メタデータ) (2023-09-21T13:36:57Z) - Natural Language Processing for Cognitive Analysis of Emotions [0.0]
本稿では,感情とその原因を探索する新たなアノテーション手法と,感情場面の自伝的記述からなる新たなフランス語データセットを提案する。
テキストは、A. Finkelによって開発された感情の認知分析を適用して、人々が感情管理を改善する手助けをすることで収集された。
論文 参考訳(メタデータ) (2022-10-11T09:47:00Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
本稿では,スポーツ分析のための映像行動認識に関する調査を行う。
サッカー、バスケットボール、バレーボール、ホッケー、フィギュアスケート、体操、卓球、ダイビング、バドミントンなど10種以上のスポーツを紹介します。
本研究では,サッカー,バスケットボール,卓球,フィギュアスケート動作認識をサポートするPaddlePaddleを用いたツールボックスを開発した。
論文 参考訳(メタデータ) (2022-06-02T13:19:36Z) - A Comprehensive Review of Computer Vision in Sports: Open Issues, Future
Trends and Research Directions [3.138976077182707]
本稿では,スポーツ映像解析の高レベル分析への応用について概説する。
選手の検出と分類、スポーツにおける選手またはボールの追跡、選手またはボールの軌跡の予測、チームの戦略の認識、スポーツにおける様々なイベントの分類が含まれる。
論文 参考訳(メタデータ) (2022-03-03T07:49:21Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
顔面筋運動の有意なパターンを抽出する機能的ANOVAに基づく手法を提案する。
感情群間の表現に時間的差があるかどうかを関数fテストを用いて判定する。
論文 参考訳(メタデータ) (2021-03-01T08:31:08Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースゲームの強化学習について検討する。
エージェントの動作が解釈可能な推論手順によって生成され、支援されるように、意思決定のための知識グラフを用いた明示的な推論を行うことを目指している。
提案手法を多数の人為的ベンチマークゲームで広範囲に評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-10-22T12:40:22Z) - Intra- and Inter-Action Understanding via Temporal Action Parsing [118.32912239230272]
本研究では,スポーツビデオにサブアクションの手動アノテーションを付加した新しいデータセットを構築し,その上に時間的行動解析を行う。
スポーツ活動は通常、複数のサブアクションから構成されており、このような時間構造に対する意識は、行動認識に有益であることを示す。
また,時間的解析手法を多数検討し,そのラベルを知らずにトレーニングデータからサブアクションをマイニングできる改良手法を考案した。
論文 参考訳(メタデータ) (2020-05-20T17:45:18Z) - Challenges and Opportunities for Computer Vision in Real-life Soccer
Analytics [6.144873990390373]
スポーツ分析は、スポーツデータのコーパスからのパターンの理解と発見を扱う。
本稿では主に,コンピュータビジョンにおけるスポーツビデオ解析による課題と機会に焦点を当てる。
論文 参考訳(メタデータ) (2020-04-13T20:06:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。