論文の概要: Differentiable Turbulence II
- arxiv url: http://arxiv.org/abs/2307.13533v1
- Date: Tue, 25 Jul 2023 14:27:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-07-26 16:47:21.586470
- Title: Differentiable Turbulence II
- Title(参考訳): 微分可能な乱流II
- Authors: Varun Shankar, Romit Maulik, Venkatasubramanian Viswanathan
- Abstract要約: そこで我々は,Navier-Stokes方程式を解くために,ディープラーニングモデルを汎用有限要素数値スキームに統合するためのフレームワークを開発した。
学習したクロージャは、より微細なグリッド上の従来の大規模渦シミュレーションに匹敵する精度で10倍のスピードアップを達成できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differentiable fluid simulators are increasingly demonstrating value as
useful tools for developing data-driven models in computational fluid dynamics
(CFD). Differentiable turbulence, or the end-to-end training of machine
learning (ML) models embedded in CFD solution algorithms, captures both the
generalization power and limited upfront cost of physics-based simulations, and
the flexibility and automated training of deep learning methods. We develop a
framework for integrating deep learning models into a generic finite element
numerical scheme for solving the Navier-Stokes equations, applying the
technique to learn a sub-grid scale closure using a multi-scale graph neural
network. We demonstrate the method on several realizations of flow over a
backwards-facing step, testing on both unseen Reynolds numbers and new
geometry. We show that the learned closure can achieve accuracy comparable to
traditional large eddy simulation on a finer grid that amounts to an equivalent
speedup of 10x. As the desire and need for cheaper CFD simulations grows, we
see hybrid physics-ML methods as a path forward to be exploited in the near
future.
- Abstract(参考訳): 微分可能な流体シミュレータは、計算流体力学(CFD)におけるデータ駆動モデルの開発に有用なツールとして、ますます価値を誇示している。
CFDソリューションアルゴリズムに組み込まれた機械学習モデル(ML)のエンドツーエンドトレーニングである微分乱流は、物理ベースのシミュレーションの一般化パワーと制限された事前コストの両方をキャプチャし、ディープラーニングメソッドの柔軟性と自動トレーニングを行う。
我々は,ディープラーニングモデルをNavier-Stokes方程式を解くための汎用有限要素数値スキームに統合するためのフレームワークを開発し,マルチスケールグラフニューラルネットワークを用いてサブグリッドスケールクロージャを学習する手法を適用した。
本手法は,逆向きのステップ上での流れを複数実現し,未知のレイノルズ数と新しい幾何学の両方をテストする。
学習したクロージャは、より微細なグリッド上の従来の大規模渦シミュレーションに匹敵する精度で10倍のスピードアップを達成できることを示す。
より安価なCFDシミュレーションの欲求とニーズが高まるにつれて、近い将来、ハイブリッド物理-ML手法が活用される道のりとして見なされる。
関連論文リスト
- Fusing CFD and measurement data using transfer learning [49.1574468325115]
本稿では,伝送学習によるシミュレーションと計測データを組み合わせたニューラルネットワークに基づく非線形手法を提案する。
最初のステップでは、ニューラルネットワークがシミュレーションデータに基づいてトレーニングされ、分散量の空間的特徴を学習する。
第2のステップは、ニューラルネットワークモデル全体の小さなサブセットを再トレーニングするだけで、シミュレーションと測定の間の体系的なエラーを修正するために、測定データ上での変換学習である。
論文 参考訳(メタデータ) (2025-07-28T07:21:46Z) - Geometric Operator Learning with Optimal Transport [77.16909146519227]
複素測地上での偏微分方程式(PDE)に対する演算子学習に最適輸送(OT)を統合することを提案する。
表面に焦点を当てた3次元シミュレーションでは、OTベースのニューラルオペレーターが表面形状を2次元パラメータ化潜在空間に埋め込む。
ShapeNet-Car と DrivAerNet-Car を用いたレイノルズ平均化 Navier-Stokes 方程式 (RANS) を用いた実験により,提案手法は精度の向上と計算コストの削減を図った。
論文 参考訳(メタデータ) (2025-07-26T21:28:25Z) - Flow Matching for Geometric Trajectory Simulation [4.271235935891555]
N体系は、分子動力学、生化学、歩行者動力学など幅広い分野の応用において基本的な問題である。
機械学習は、物理ベースのシミュレータをスケールし、実験データから直接モデルを開発する上で、貴重なツールとなっている。
現実的な軌跡を生成するためには、既存の手法は、非情報ノイズから始まる複雑な変換を学習し、ドメインインフォームド先行の活用を許さない必要がある。
本稿では,この制限に対処するためにSTFlowを提案する。フローマッチングとデータ依存結合を利用して,モデル表現率やスケーラビリティを犠牲にすることなく,幾何学的軌道の物理インフォームドシミュレーションを容易にする。
論文 参考訳(メタデータ) (2025-05-24T11:18:59Z) - A general physics-constrained method for the modelling of equation's closure terms with sparse data [8.927683811459543]
複数の初期および境界条件から物理制約と異種データを統合した連続並列マルチネットワークアーキテクチャを提案する。
我々は、未知のクロージャ項を独立にモデル化し、様々な問題にまたがる一般化性を高めるために、専門的な作業を行っている。
これらの閉包モデルは正確な偏微分方程式(PDE)解法に統合され、工学的応用における複雑な予測シミュレーションに対する堅牢な解を可能にする。
論文 参考訳(メタデータ) (2025-04-30T14:41:18Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Machine learning for modelling unstructured grid data in computational physics: a review [37.19820094095164]
非構造化グリッドデータは計算物理学における複雑な幾何学や力学のモデル化に不可欠である。
このレビューは、非構造化グリッドデータに機械学習アプローチを適用しようとする計算科学者のためのガイドブックとして意図されている。
MLメソッドが従来の数値技術の本質的な制限を克服する方法について、特に焦点を当てている。
非構造化データを用いた生成モデルやメッシュ生成のための強化学習,ハイブリッド物理データ駆動パラダイムなど,新たな方向性について論じる。
論文 参考訳(メタデータ) (2025-02-13T14:11:33Z) - Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries [23.111935712144277]
複雑な幾何学体を取り巻く流体力学の迅速かつ正確なシミュレーションは、様々な工学的・科学的応用において重要である。
科学機械学習(SciML)はかなりの可能性を示してきたが、この分野のほとんどの研究は単純な幾何学に限られている。
本稿では,複雑な地形上での流動予測のための多種多様なSciMLモデルのベンチマークにより,このギャップを解消する。
論文 参考訳(メタデータ) (2024-12-31T00:23:15Z) - A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
非定常・非線形偏微分方程式(PDE)を正確にモデル化するためのドメイン分割型ディープラーニング(DL)フレームワークCoMLSimを提案する。
このフレームワークは、(a)畳み込みニューラルネットワーク(CNN)ベースのオートエンコーダアーキテクチャと(b)完全に接続された層で構成される自己回帰モデルという、2つの重要なコンポーネントで構成されている。
論文 参考訳(メタデータ) (2024-08-26T17:50:47Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Enhancing Data-Assimilation in CFD using Graph Neural Networks [0.0]
本稿では,グラフニューラルネットワーク(GNN)モデルによる随伴最適化に基づく,流体力学に応用されたデータ同化のための新しい機械学習手法を提案する。
我々は,有限要素法(FEM)の解法に基づく直接数値シミュレーションを用いて,GNNモデルと解法の間の2次元のインターフェースにより,GNNの予測をFEM解析の処理後ステップに組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-11-29T19:11:40Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sobolev training of thermodynamic-informed neural networks for smoothed
elasto-plasticity models with level set hardening [0.0]
本研究では, 可視成分を用いた平滑な弾塑性モデルの学習を目的としたディープラーニングフレームワークを提案する。
収率関数を進化レベル集合として再キャストすることにより、ハミルトン・ヤコビ方程式の解を予測する機械学習手法を導入する。
論文 参考訳(メタデータ) (2020-10-15T22:43:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。