Exposing Hypersensitivity in Quantum Chaotic Dynamics
- URL: http://arxiv.org/abs/2307.14678v1
- Date: Thu, 27 Jul 2023 08:07:40 GMT
- Title: Exposing Hypersensitivity in Quantum Chaotic Dynamics
- Authors: Andrzej Grudka, Pawe{\l} Kurzy\'nski, Adam S. Sajna, Jan W\'ojcik,
Antoni W\'ojcik
- Abstract summary: We show that unitary dynamics of a multi-qubit system can display hypersensitivity to initial state perturbation.
Our findings confirm that the observed hypersensitivity corresponds to commonly used signatures of quantum chaos.
- Score: 0.09545101073027092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate that the unitary dynamics of a multi-qubit system can display
hypersensitivity to initial state perturbation. This contradicts the common
belief that the classical approach based on the exponential divergence of
initially neighboring trajectories cannot be applied to identify chaos in
quantum systems. To observe hypersensitivity we use quantum state-metric,
introduced by Girolami and Anza in [Phys. Rev. Lett. 126 (2021) 170502], which
can be interpreted as a quantum Hamming distance. As an example of a quantum
system, we take the multi-qubit implementation of the quantum kicked top, a
paradigmatic system known to exhibit quantum chaotic behavior. Our findings
confirm that the observed hypersensitivity corresponds to commonly used
signatures of quantum chaos. Furthermore, we demonstrate that the proposed
metric can detect quantum chaos in the same regime and under analogous initial
conditions as in the corresponding classical case.
Related papers
- Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Ergodic and chaotic properties in Tavis-Cummings dimer: quantum and classical limit [0.0]
We investigate two key aspects of quantum systems by using the Tavis-Cummings dimer system as a platform.
The first aspect involves unraveling the relationship between the phenomenon of self-trapping (or lack thereof) and integrability (or quantum chaos)
Secondly, we uncover the possibility of mixed behavior in this quantum system using diagnostics based on random matrix theory.
arXiv Detail & Related papers (2024-04-21T13:05:29Z) - Tsirelson inequalities: Detecting cheating and quantumness in a single framework [0.0]
Tsirelson inequalities have emerged as a powerful tool in quantum theory to detect quantumness.
In this paper we harness the versatility of Tsirelson inequalities to address two distinct problems: detecting cheating in classic shell games and probing quantumness in spatially separated systems.
arXiv Detail & Related papers (2023-08-31T09:08:43Z) - Steady-state quantum chaos in open quantum systems [0.0]
We introduce the notion of steady-state quantum chaos as a general phenomenon in open quantum many-body systems.
Chaos and integrability in the steady state of an open quantum system are instead uniquely determined by the spectral structure of the time evolution generator.
We study steady-state chaos in the driven-dissipative Bose-Hubbard model, a paradigmatic example of out-of-equilibrium bosonic system without particle number conservation.
arXiv Detail & Related papers (2023-05-24T18:00:22Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Non-normal Hamiltonian dynamics in quantum systems and its realization
on quantum computers [0.0]
We study the dynamics driven by the non-normal matrix (Hamiltonian) realized as a continuous quantum trajectory of the Lindblad master equation in open quantum systems.
We formulate the transient suppression of the decay rate of the norm due to the pseudospectral behavior and derive a non-Hermitian/non-normal analog of the time-energy uncertainty relation.
arXiv Detail & Related papers (2021-07-18T13:29:28Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Coherence Resonance [0.0]
coherence resonance, a phenomenon in which regularity of noise-induced oscillations is maximized at a certain optimal noise intensity, can be observed in quantum dissipative systems.
We show that this second peak of resonance is a strong quantum effect that cannot be interpreted by a semiclassical picture.
arXiv Detail & Related papers (2020-06-16T14:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.