Explaining Relation Classification Models with Semantic Extents
- URL: http://arxiv.org/abs/2308.02193v1
- Date: Fri, 4 Aug 2023 08:17:52 GMT
- Title: Explaining Relation Classification Models with Semantic Extents
- Authors: Lars Kl\"oser, Andre B\"usgen, Philipp Kohl, Bodo Kraft, Albert
Z\"undorf
- Abstract summary: A lack of explainability is currently a complicating factor in many real-world applications.
We introduce semantic extents, a concept to analyze decision patterns for the relation classification task.
We provide an annotation tool and a software framework to determine semantic extents for humans and models.
- Score: 1.7604348079019634
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, the development of large pretrained language models, such as
BERT and GPT, significantly improved information extraction systems on various
tasks, including relation classification. State-of-the-art systems are highly
accurate on scientific benchmarks. A lack of explainability is currently a
complicating factor in many real-world applications. Comprehensible systems are
necessary to prevent biased, counterintuitive, or harmful decisions.
We introduce semantic extents, a concept to analyze decision patterns for the
relation classification task. Semantic extents are the most influential parts
of texts concerning classification decisions. Our definition allows similar
procedures to determine semantic extents for humans and models. We provide an
annotation tool and a software framework to determine semantic extents for
humans and models conveniently and reproducibly. Comparing both reveals that
models tend to learn shortcut patterns from data. These patterns are hard to
detect with current interpretability methods, such as input reductions. Our
approach can help detect and eliminate spurious decision patterns during model
development. Semantic extents can increase the reliability and security of
natural language processing systems. Semantic extents are an essential step in
enabling applications in critical areas like healthcare or finance. Moreover,
our work opens new research directions for developing methods to explain deep
learning models.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Probing the Decision Boundaries of In-context Learning in Large Language Models [31.977886254197138]
We propose a new mechanism to probe and understand in-context learning from the lens of decision boundaries for in-context binary classification.
To our surprise, we find that the decision boundaries learned by current LLMs in simple binary classification tasks are often irregular and non-smooth.
arXiv Detail & Related papers (2024-06-17T06:00:24Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Topological Interpretability for Deep-Learning [0.30806551485143496]
Deep learning (DL) models cannot quantify the certainty of their predictions.
This work presents a method to infer prominent features in two DL classification models trained on clinical and non-clinical text.
arXiv Detail & Related papers (2023-05-15T13:38:13Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Learning Disentangled Representations for Natural Language Definitions [0.0]
We argue that recurrent syntactic and semantic regularities in textual data can be used to provide the models with both structural biases and generative factors.
We leverage the semantic structures present in a representative and semantically dense category of sentence types, definitional sentences, for training a Variational Autoencoder to learn disentangled representations.
arXiv Detail & Related papers (2022-09-22T14:31:55Z) - Testing Pre-trained Language Models' Understanding of Distributivity via
Causal Mediation Analysis [13.07356367140208]
We introduce DistNLI, a new diagnostic dataset for natural language inference.
We find that the extent of models' understanding is associated with model size and vocabulary size.
arXiv Detail & Related papers (2022-09-11T00:33:28Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
We investigate the reason behind the surprising adversarial brittleness of scoring models.
Our results indicate that autoscoring models, despite getting trained as "end-to-end" models, behave like bag-of-words models.
We propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies.
arXiv Detail & Related papers (2021-09-24T03:49:38Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.