Exploring sustainable pathways for urban traffic decarbonization:
vehicle technologies, management strategies, and driving behaviour
- URL: http://arxiv.org/abs/2308.14914v1
- Date: Mon, 28 Aug 2023 22:17:36 GMT
- Title: Exploring sustainable pathways for urban traffic decarbonization:
vehicle technologies, management strategies, and driving behaviour
- Authors: Saba Sabet and Bilal Farooq
- Abstract summary: This research conducts a comprehensive micro-simulation of traffic and emissions in downtown Toronto, Canada.
To achieve this, transformers-based prediction models accurately forecast Greenhouse Gas (GHG) and Nitrogen Oxides (NOx) emissions.
The study finds that 100% battery electric vehicles have the lowest GHG emissions, showing their potential as a sustainable transportation solution.
- Score: 5.172508424953869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The global fight against climate change and air pollution prioritizes the
transition to sustainable transportation options. Understanding the impacts of
various sustainable pathways on emissions, travel time, and costs is crucial
for researchers and policymakers. This research conducts a comprehensive
microsimulation of traffic and emissions in downtown Toronto, Canada, to
examine decarbonization scenarios. The resulting 140 scenarios involve
different fuel types, Connected and Automated Vehicles (CAV) penetration rates,
and routing strategies combined with driving style. To achieve this,
transformers-based prediction models accurately forecast Greenhouse Gas (GHG)
and Nitrogen Oxides (NOx) emissions and average speed for eco-routing. The
study finds that 100% battery electric vehicles have the lowest GHG emissions,
showing their potential as a sustainable transportation solution. However,
challenges related to cost and availability persist. Hybrid Electric Vehicles
and e-fuels demonstrate considerable emission reductions, emerging as promising
alternatives. Integrating CAVs with anticipatory routing strategies
significantly reduces GHG emissions. Additionally, eco-driving practices and
eco-routing strategies have a notable impact on NOx emissions and travel time.
Comprehensive cost analysis provides valuable insights into the economic
implications of various strategies and technologies. These findings offer
guidance to various stakeholders in formulating effective strategies, behaviour
changes, and policies for emission reduction and sustainable transportation
development.
Related papers
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
Much of this debate has concentrated on direct impact without addressing the significant indirect effects.
This paper examines how the problem of Jevons' Paradox applies to AI, whereby efficiency gains may paradoxically spur increased consumption.
We argue that understanding these second-order impacts requires an interdisciplinary approach, combining lifecycle assessments with socio-economic analyses.
arXiv Detail & Related papers (2025-01-27T22:45:06Z) - Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
We present the first study to utilize a Graph Convolutional Network (GCN) architecture to model link-level bicycling volumes.
We benchmark it against traditional machine learning models, such as linear regression, support vector machines, and random forest.
Our results show that the GCN model outperforms these traditional models in predicting Annual Average Daily Bicycle (AADB) counts.
arXiv Detail & Related papers (2024-10-11T04:53:18Z) - GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale [3.5052652317043846]
We consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles.
A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions.
We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities.
arXiv Detail & Related papers (2024-08-10T18:23:59Z) - EcoFollower: An Environment-Friendly Car Following Model Considering Fuel Consumption [9.42048156323799]
This study introduces EcoFollower, a novel eco-car-following model developed using reinforcement learning (RL) to optimize fuel consumption in car-following scenarios.
The model achieved a significant reduction in fuel consumption, lowering it by 10.42% compared to actual driving scenarios.
arXiv Detail & Related papers (2024-07-22T16:48:37Z) - Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
arXiv Detail & Related papers (2024-06-12T05:08:51Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Analyzing Emissions and Energy Efficiency at Unsignalized Real-world
Intersections Under Mixed Traffic Control [27.838827756692243]
U.S. transportation generates 28% of U.S. emissions.
Recent research has developed mixed traffic control eco-driving strategies at signalized intersections to decrease emissions.
We provide an emissions analysis on unsignalized intersections with complex, real-world topologies and traffic demands.
arXiv Detail & Related papers (2023-11-20T16:02:33Z) - Deep Reinforcement Learning-based Intelligent Traffic Signal Controls
with Optimized CO2 emissions [6.851243292023835]
Transportation networks face the challenge of sub-optimal control policies that can have adverse effects on human health, the environment, and contribute to traffic congestion.
Despite several adaptive traffic signal controllers in literature, limited research has been conducted on their comparative performance.
We propose EcoLight, a reward shaping scheme for reinforcement learning algorithms that not only reduces CO2 emissions but also achieves competitive results in metrics such as travel time.
arXiv Detail & Related papers (2023-10-19T19:54:47Z) - Driver Assistance Eco-driving and Transmission Control with Deep
Reinforcement Learning [2.064612766965483]
In this paper, a model-free deep reinforcement learning (RL) control agent is proposed for active Eco-driving assistance.
It trades-off fuel consumption against other driver-accommodation objectives, and learns optimal traction torque and transmission shifting policies from experience.
It shows superior performance in minimizing fuel consumption compared to a baseline controller that has full knowledge of fuel-efficiency tables.
arXiv Detail & Related papers (2022-12-15T02:52:07Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Learning Eco-Driving Strategies at Signalized Intersections [1.7682859739940435]
We propose a reinforcement learning approach to learn effective eco-driving control strategies.
We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time.
Results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.
arXiv Detail & Related papers (2022-04-26T19:45:11Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Optimizing carbon tax for decentralized electricity markets using an
agent-based model [69.3939291118954]
Averting the effects of anthropogenic climate change requires a transition from fossil fuels to low-carbon technology.
Carbon taxes have been shown to be an efficient way to aid in this transition.
We use the NSGA-II genetic algorithm to minimize average electricity price and relative carbon intensity of the electricity mix.
arXiv Detail & Related papers (2020-05-28T06:54:43Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050.
The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US $482.05 billion in the U.S.
arXiv Detail & Related papers (2020-05-09T13:53:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.