論文の概要: Using Multiple Vector Channels Improves E(n)-Equivariant Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2309.03139v1
- Date: Wed, 6 Sep 2023 16:24:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 14:35:04.618273
- Title: Using Multiple Vector Channels Improves E(n)-Equivariant Graph Neural
Networks
- Title(参考訳): 複数ベクトルチャネルを用いたE(n)-同変グラフニューラルネットワークの改良
- Authors: Daniel Levy, S\'ekou-Oumar Kaba, Carmelo Gonzales, Santiago Miret,
Siamak Ravanbakhsh
- Abstract要約: 本稿ではE(n)-同変グラフニューラルネットワークへの自然な拡張について述べる。
提案したマルチチャネルEGNNは、N体荷電粒子動力学、分子特性予測、太陽系天体の軌道予測において、標準単一チャネルEGNNよりも優れている。
- 参考スコア(独自算出の注目度): 20.710738518192763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a natural extension to E(n)-equivariant graph neural networks that
uses multiple equivariant vectors per node. We formulate the extension and show
that it improves performance across different physical systems benchmark tasks,
with minimal differences in runtime or number of parameters. The proposed
multichannel EGNN outperforms the standard singlechannel EGNN on N-body charged
particle dynamics, molecular property predictions, and predicting the
trajectories of solar system bodies. Given the additional benefits and minimal
additional cost of multi-channel EGNN, we suggest that this extension may be of
practical use to researchers working in machine learning for the physical
sciences
- Abstract(参考訳): 本稿では,ノード毎に複数の同変ベクトルを用いるe(n)-同変グラフニューラルネットワークの自然な拡張を提案する。
拡張を定式化し、実行時やパラメータの数に最小限の違いを伴って、様々な物理システムのベンチマークタスクのパフォーマンスを改善することを示す。
提案したマルチチャネルEGNNは、N体荷電粒子動力学、分子特性予測、太陽系天体の軌道予測において、標準単一チャネルEGNNよりも優れている。
マルチチャネルEGNNのさらなる利点と最小追加コストを考えると、この拡張は物理科学のための機械学習の研究者にとって実用的である可能性が示唆されている。
関連論文リスト
- Spiking Graph Neural Network on Riemannian Manifolds [51.15400848660023]
グラフニューラルネットワーク(GNN)は、グラフの学習において支配的なソリューションとなっている。
既存のスパイク GNN はユークリッド空間のグラフを考慮し、構造幾何学を無視している。
マニフォールド値スパイキングGNN(MSG)を提案する。
MSGは従来のGNNよりも優れた性能とエネルギー効率を実現している。
論文 参考訳(メタデータ) (2024-10-23T15:09:02Z) - Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
離散同変グラフニューラルネットワーク(DEGNN)を提案する。
具体的には、幾何学的特徴を置換不変な埋め込みに変換することによって、このような離散同変メッセージパッシングを構築することができることを示す。
DEGNNはデータ効率が良く、少ないデータで学習でき、観測不能な向きなどのシナリオをまたいで一般化できることを示す。
論文 参考訳(メタデータ) (2024-06-24T03:37:51Z) - GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural
Networks [11.110435047801506]
本稿では, 分散保存アグリゲーション関数 (VPA) を提案する。
その結果, 正常化フリー, 自己正規化GNNへの道を開くことができた。
論文 参考訳(メタデータ) (2024-03-07T18:52:27Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - Equivariant Graph Neural Networks for Charged Particle Tracking [1.6626046865692057]
EuclidNetは荷電粒子追跡のための新しい対称性等価GNNである。
TrackMLデータセット上の最先端のインタラクションネットワークに対してベンチマークを行う。
以上の結果から,EuclidNetは小規模なモデルスケールでほぼ最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-04-11T15:43:32Z) - Spatial Attention Kinetic Networks with E(n)-Equivariance [0.951828574518325]
回転、翻訳、反射、n次元幾何学空間上の置換と等価なニューラルネットワークは、物理モデリングにおいて有望であることを示している。
本稿では, エッジベクトルの線形結合をニューラルネットワークでパラメトリケートし, 等価性を実現するための, 簡易な代替関数形式を提案する。
E(n)-等価性を持つ空間的注意運動ネットワーク(SAKE)を設計する。
論文 参考訳(メタデータ) (2023-01-21T05:14:29Z) - Spiking Variational Graph Auto-Encoders for Efficient Graph
Representation Learning [10.65760757021534]
本稿では,効率的なグラフ表現学習のためのSNNに基づく深層生成手法,すなわちSpking Variational Graph Auto-Encoders (S-VGAE)を提案する。
我々は,複数のベンチマークグラフデータセット上でリンク予測実験を行い,この結果から,グラフ表現学習における他のANNやSNNに匹敵する性能で,より少ないエネルギーを消費することを示した。
論文 参考訳(メタデータ) (2022-10-24T12:54:41Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Equivariant Graph Hierarchy-Based Neural Networks [53.60804845045526]
Equivariant Hierarchy-based Graph Networks (EGHNs)を提案する。
EGHNは、EMMP(Generalized Equivariant Matrix Message Passing)、E-Pool、E-UpPoolの3つの主要なコンポーネントから構成される。
EGHNのマルチオブジェクト・ダイナミクス・シミュレーション,モーションキャプチャ,タンパク質・ダイナミックス・モデリングなど,いくつかの応用における有効性について検討した。
論文 参考訳(メタデータ) (2022-02-22T03:11:47Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
論文 参考訳(メタデータ) (2021-02-19T10:25:33Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性は、GNNにとって非常に望ましい2つの重要な特性である。
既存のGNNは、主にメッセージパッシング機構に基づいており、同時に2つの特性を保存できないことを示す。
ノードの近さを保つため,既存のGNNをノード表現で拡張する。
論文 参考訳(メタデータ) (2020-09-05T16:46:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。