論文の概要: A Tutorial on the Non-Asymptotic Theory of System Identification
- arxiv url: http://arxiv.org/abs/2309.03873v2
- Date: Sun, 16 Jun 2024 21:50:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 12:40:28.015608
- Title: A Tutorial on the Non-Asymptotic Theory of System Identification
- Title(参考訳): システム同定の非漸近理論に関する研究
- Authors: Ingvar Ziemann, Anastasios Tsiamis, Bruce Lee, Yassir Jedra, Nikolai Matni, George J. Pappas,
- Abstract要約: このチュートリアルは、最近開発されたシステム識別理論における非漸近的手法の紹介となる。
我々はこれらのツールを用いて、自己回帰モデルにおけるパラメータを識別する様々な最小二乗推定器の性能の合理化を図っている。
我々は、ここで提示されたアイデアがある種の非線形識別問題にどのように拡張できるかをスケッチして結論付ける。
- 参考スコア(独自算出の注目度): 26.466614720354933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This tutorial serves as an introduction to recently developed non-asymptotic methods in the theory of -- mainly linear -- system identification. We emphasize tools we deem particularly useful for a range of problems in this domain, such as the covering technique, the Hanson-Wright Inequality and the method of self-normalized martingales. We then employ these tools to give streamlined proofs of the performance of various least-squares based estimators for identifying the parameters in autoregressive models. We conclude by sketching out how the ideas presented herein can be extended to certain nonlinear identification problems.
- Abstract(参考訳): このチュートリアルは、-主に線形システム識別の理論において、最近開発された非漸近的手法の紹介となる。
我々は,この領域の様々な問題,例えば被覆技術,ハンソン・ライト不等式,および自己正規化マルティンガレの方法など,特に有用と考えられるツールを強調した。
次に、これらのツールを用いて、自己回帰モデルにおけるパラメータを識別する様々な最小二乗推定器の性能の合理化の証明を行う。
我々は、ここで提示されたアイデアがある種の非線形識別問題にどのように拡張できるかをスケッチして結論付ける。
関連論文リスト
- Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Nonlinear Independent Component Analysis for Principled Disentanglement
in Unsupervised Deep Learning [2.2329417756084093]
教師なしディープラーニングにおける中心的な問題は、高次元データの有用な表現を見つける方法である。
本稿では非線形ICA理論とアルゴリズムの現状を概観する。
論文 参考訳(メタデータ) (2023-03-29T08:51:28Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
本稿では, 非線形・非線形非自律系における雑音・スパースデータからのシステム識別(ID)の問題について考察する。
隠れマルコフモデル学習のためのベイズ式から導かれる目的関数を提案し,解析する。
提案手法は,システムIDに適合するスムーズさと本質的な正規化を改善したことを示す。
論文 参考訳(メタデータ) (2022-12-20T16:36:23Z) - Evaluating Disentanglement in Generative Models Without Knowledge of
Latent Factors [71.79984112148865]
本稿では,学習中に提示される学習力学に基づいて生成モデルのランキング付けを行う手法を提案する。
本手法は,近年の解離の理論的特徴から着想を得たものであり,その根底にある潜伏因子の監督は不要である。
論文 参考訳(メタデータ) (2022-10-04T17:27:29Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Geometric Methods for Sampling, Optimisation, Inference and Adaptive
Agents [102.42623636238399]
我々は,サンプリング,最適化,推論,適応的意思決定といった問題に根ざした基本的な幾何学的構造を同定する。
これらの問題を効率的に解くためにこれらの幾何学的構造を利用するアルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-03-20T16:23:17Z) - Sparse Bayesian Deep Learning for Dynamic System Identification [14.040914364617418]
本稿では,システム同定のためのディープニューラルネットワーク(DNN)の疎ベイズ処理を提案する。
提案されたベイズ的アプローチは、限界確率/モデル証拠近似による課題を緩和する原則的な方法を提供する。
提案手法の有効性を線形および非線形システム同定ベンチマークで示す。
論文 参考訳(メタデータ) (2021-07-27T16:09:48Z) - Variational Nonlinear System Identification [0.8793721044482611]
本稿では,非線形状態空間モデルに対するパラメータ推定について検討する。
我々は,最大確率推定に深いつながりを持つ原理的手法である変分推論(vi)アプローチを採用する。
このviアプローチは最終的に、決定論的で扱いやすく、標準最適化ツールを使って解決できる最適化問題の解としてモデルの推定を提供する。
論文 参考訳(メタデータ) (2020-12-08T05:43:50Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
本稿では、介入データを活用可能なニューラルネットワークに基づく理論的基盤化手法を提案する。
提案手法は,様々な環境下での美術品の状態と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-07-03T15:19:17Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
一般化線形モデルに焦点をあて、このサンプリングバイアスを調整しなければ、モデルは準最適に収束するか、あるいは最適解に収束しないかもしれないことを示す。
理論的保証を伴って適応的なアプローチを提案し、いくつかの既存手法を実証的に上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-08T18:20:28Z) - Sparse Methods for Automatic Relevance Determination [0.0]
まず、自動妥当性決定(ARD)について検討し、スパースモデルを実現するために、追加の正規化やしきい値設定の必要性を解析的に実証する。
次に、正規化ベースとしきい値ベースという2つの手法のクラスについて論じる。
論文 参考訳(メタデータ) (2020-05-18T14:08:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。