DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision
- URL: http://arxiv.org/abs/2309.06941v3
- Date: Wed, 08 Jan 2025 09:35:58 GMT
- Title: DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision
- Authors: Xiangchen Yin, Zhenda Yu, Xin Gao, Xiao Sun,
- Abstract summary: We propose a DCT-driven enhancement transformer (DEFormer) framework to restore lost details in the dark area.<n>Our framework has achieved superior results on the LOL and MIT-Adobe FiveK datasets.
- Score: 12.150160523389957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-light image enhancement restores the colors and details of a single image and improves high-level visual tasks. However, restoring the lost details in the dark area is still a challenge relying only on the RGB domain. In this paper, we delve into frequency as a new clue into the model and propose a DCT-driven enhancement transformer (DEFormer) framework. First, we propose a learnable frequency branch (LFB) for frequency enhancement contains DCT processing and curvature-based frequency enhancement (CFE) to represent frequency features. Additionally, we propose a cross domain fusion (CDF) to reduce the differences between the RGB domain and the frequency domain. Our DEFormer has achieved superior results on the LOL and MIT-Adobe FiveK datasets, improving the dark detection performance.
Related papers
- Efficient RAW Image Deblurring with Adaptive Frequency Modulation [11.866039197666808]
Deblurring RAW images presents unique challenges, particularly in handling frequency-dependent blur.<n>We propose Frequency Enhanced Network (FrENet), a framework specifically designed for RAW-to-RAW deblurring.<n> Experimental results demonstrate that FrENet surpasses state-of-the-art deblurring methods in RAW image deblurring.
arXiv Detail & Related papers (2025-05-30T09:46:39Z) - Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition [83.40450475728792]
We present Freqformer, a Transformer-based framework specifically designed for image demoir'eing through targeted frequency separation.<n>Our method performs an effective frequency decomposition that explicitly splits moir'e patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions.<n>Experiments on various demoir'eing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size.
arXiv Detail & Related papers (2025-05-25T12:23:10Z) - DSDNet: Raw Domain Demoiréing via Dual Color-Space Synergy [17.598942972989228]
We propose a single-stage raw domain demoir'eing framework, Dual-Stream Demoir'eing Network (DSDNet)
To guide luminance correction and moir'e removal, we design a raw-to-YCbCr mapping pipeline.
We also develop a Luminance-Chrominance Adaptive Transformer (LCAT) to better guide color fidelity.
arXiv Detail & Related papers (2025-04-22T10:09:33Z) - Frequency Enhancement for Image Demosaicking [40.76899837631637]
We propose Dual-path Frequency Enhancement Network (DFENet), which reconstructs RGB images in a divide-and-conquer manner.
One path focuses on generating missing information through detail refinement in spatial domain, while the other aims at suppressing undesirable frequencies.
With these designs, the proposed DFENet outperforms other state-of-the-art algorithms on different datasets.
arXiv Detail & Related papers (2025-03-20T02:37:10Z) - Deep Fourier-embedded Network for RGB and Thermal Salient Object Detection [8.607385112274882]
Deep learning has significantly improved salient object detection (SOD) combining both RGB and thermal (RGB-T) images.
Existing deep learning-based RGB-T SOD models suffer from two major limitations.
We propose a purely Fourier transform-based model, namely Deep Fourier-Embedded Network (DFENet) for accurate RGB-T SOD.
arXiv Detail & Related papers (2024-11-27T14:55:16Z) - Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method.
During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images.
During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images.
arXiv Detail & Related papers (2024-08-25T03:53:17Z) - FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder [49.79611204954311]
Underwater images often suffer from various issues such as low brightness, color shift, blurred details, and noise due to absorption light and scattering caused by water and suspended particles.
Previous underwater image enhancement (UIE) methods have primarily focused on spatial domain enhancement, neglecting the frequency domain information inherent in the images.
arXiv Detail & Related papers (2024-04-27T15:16:34Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
Low-Light Image Enhancement (LLIE) task tends to restore the details and visual information from corrupted low-light images.
We propose a novel trainable color space, named Horizontal/Vertical-Intensity (HVI)
It not only decouples brightness and color from RGB channels to mitigate the instability during enhancement but also adapts to low-light images in different illumination ranges due to the trainable parameters.
arXiv Detail & Related papers (2024-02-08T16:47:43Z) - Low-Light Enhancement in the Frequency Domain [24.195131201768096]
Decreased visibility, intensive noise, and biased color are the common problems existing in low-light images.
We propose a novel residual recurrent multi-wavelet convolutional neural network R2-MWCNN learned in the frequency domain.
This end-to-end trainable network utilizes a multi-level discrete wavelet transform to divide input feature maps into distinct frequencies, resulting in a better denoise impact.
arXiv Detail & Related papers (2023-06-29T08:39:34Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - RSFDM-Net: Real-time Spatial and Frequency Domains Modulation Network
for Underwater Image Enhancement [5.3240763486073055]
We propose a Real-time Spatial and Frequency Domains Modulation Network (RSFDM-Net) for the efficient enhancement of colors and details in underwater images.
Our proposed conditional network is designed with Adaptive Fourier Gating Mechanism (AFGM) and Multiscale Conal Attention Module (MCAM)
To more precisely correct the color cast and low saturation of the image, we introduce a Three-branch Feature Extraction (TFE) block in the primary net.
arXiv Detail & Related papers (2023-02-23T17:27:05Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - Thermal Image Super-Resolution Using Second-Order Channel Attention with
Varying Receptive Fields [4.991042925292453]
We introduce a system to efficiently reconstruct thermal images.
The restoration of thermal images is critical for applications that involve safety, search and rescue, and military operations.
arXiv Detail & Related papers (2021-07-30T22:17:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.