論文の概要: Double Normalizing Flows: Flexible Bayesian Gaussian Process ODEs
Learning
- arxiv url: http://arxiv.org/abs/2309.09222v1
- Date: Sun, 17 Sep 2023 09:28:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 16:40:43.741448
- Title: Double Normalizing Flows: Flexible Bayesian Gaussian Process ODEs
Learning
- Title(参考訳): 二重正規化フロー:柔軟なベイズガウス過程の学習
- Authors: Jian Xu, Shian Du, Junmei Yang, Xinghao Ding, John Paisley, Delu Zeng
- Abstract要約: 非ガウス過程前のデータセットにおけるベイジアンガウス過程ODEの精度と不確実性の推定を改善する。
本手法は,時系列予測やデータ回復の欠如といったタスクを含む,シミュレーションされた動的システムと実世界の人間の動作データに基づいて実証する。
- 参考スコア(独自算出の注目度): 28.62579476863723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Gaussian processes have been utilized to model the vector field of
continuous dynamical systems. Bayesian inference for such models
\cite{hegde2022variational} has been extensively studied and has been applied
in tasks such as time series prediction, providing uncertain estimates.
However, previous Gaussian Process Ordinary Differential Equation (ODE) models
may underperform on datasets with non-Gaussian process priors, as their
constrained priors and mean-field posteriors may lack flexibility. To address
this limitation, we incorporate normalizing flows to reparameterize the vector
field of ODEs, resulting in a more flexible and expressive prior distribution.
Additionally, due to the analytically tractable probability density functions
of normalizing flows, we apply them to the posterior inference of GP ODEs,
generating a non-Gaussian posterior. Through these dual applications of
normalizing flows, our model improves accuracy and uncertainty estimates for
Bayesian Gaussian Process ODEs. The effectiveness of our approach is
demonstrated on simulated dynamical systems and real-world human motion data,
including tasks such as time series prediction and missing data recovery.
Experimental results indicate that our proposed method effectively captures
model uncertainty while improving accuracy.
- Abstract(参考訳): 近年、ガウス過程を用いて連続力学系のベクトル場をモデル化している。
そのようなモデルに対するベイズ推論は広範囲に研究され、時系列予測のようなタスクに応用され、不確定な推定を提供する。
しかし、以前のガウス過程常微分方程式(ode)モデルは、制約された事前値と平均場後方値が柔軟性を欠くため、非ガウス過程前駆値を持つデータセットに過小評価される可能性がある。
この制限に対処するために、正規化フローを組み込んでODEのベクトル場を再パラメータ化し、より柔軟で表現力のある事前分布をもたらす。
さらに, 正規化流れの解析的抽出可能な確率密度関数により, GP ODE の後部推定に適用し, 非ガウス的後部推定を行う。
正規化フローの2つの応用により、ベイジアンガウス過程ODEの精度と不確実性の推定を改善する。
本手法の有効性は, 時系列予測やデータ復元の欠如といったタスクを含む, シミュレーションされた動的システムと実世界の人間の動きデータに対して実証された。
実験の結果,提案手法は精度を高めつつ,モデルの不確かさを効果的に捉えていることがわかった。
関連論文リスト
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Deep Latent Force Models: ODE-based Process Convolutions for Bayesian
Deep Learning [0.0]
深潜力モデル (DLFM) は、各層に物理インフォームドカーネルを持つ深いガウス過程である。
我々はDLFMの非線形実世界の時系列データに現れるダイナミクスを捉える能力の実証的証拠を提示する。
DLFMは,非物理インフォームド確率モデルに匹敵する性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-11-24T19:55:57Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Neural Flows: Efficient Alternative to Neural ODEs [8.01886971335823]
本稿では,ORのフローである解曲線を直接ニューラルネットワークでモデル化する手法を提案する。
これにより、ニューラルネットワークのモデリング能力を維持しながら、高価な数値解法の必要性はすぐに解消される。
論文 参考訳(メタデータ) (2021-10-25T15:24:45Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
この問題に対処するための新しいドメインに依存しないアプローチを提案する。
我々は、通常の微分方程式から導かれる物理インフォームド・ランダムな特徴の合成を用いる。
提案手法は,ベンチマーク回帰タスクにおいて,他の多くの確率モデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-06-10T17:55:13Z) - Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics [21.24885597341643]
条件付き流れ (CNF) は、高次元と相互相関を持つ複雑な分布を表現できるフレキシブルな生成モデルである。
本研究では,時間的入力特徴の出力を自己回帰的に正規化する新しい手法としてMotionFlowを提案する。
本稿では,予測,動き予測時系列予測,二分節分割などのタスクに本手法を適用した。
論文 参考訳(メタデータ) (2021-04-09T14:30:35Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
本稿では、ニューラルネットワークとスケーラブルな最適化アルゴリズムを用いた生存分析のためのフレキシブルモデルを提案する。
提案手法の有効性を,既存の最先端ディープラーニングサバイバル分析モデルと比較した。
論文 参考訳(メタデータ) (2020-08-19T19:11:25Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。