論文の概要: Stable Port-Hamiltonian Neural Networks
- arxiv url: http://arxiv.org/abs/2502.02480v1
- Date: Tue, 04 Feb 2025 16:57:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:30.911029
- Title: Stable Port-Hamiltonian Neural Networks
- Title(参考訳): 安定ポート-ハミルトンニューラルネットワーク
- Authors: Fabian J. Roth, Dominik K. Klein, Maximilian Kannapinn, Jan Peters, Oliver Weeger,
- Abstract要約: 本稿では,エネルギー保存や散逸の物理的バイアスを組み込んだ機械学習アーキテクチャである,安定なポート・ハミルトンニューラルネットワークを提案する。
実例と実世界の計測データによる評価は、スパースデータからモデルを一般化する能力を示している。
データ駆動サロゲートモデリングに対するモデルの可能性は、マルチ物理シミュレーションデータへの適用において強調される。
- 参考スコア(独自算出の注目度): 12.888451750172404
- License:
- Abstract: In recent years, nonlinear dynamic system identification using artificial neural networks has garnered attention due to its manifold potential applications in virtually all branches of science and engineering. However, purely data-driven approaches often struggle with extrapolation and may yield physically implausible forecasts. Furthermore, the learned dynamics can exhibit instabilities, making it difficult to apply such models safely and robustly. This article proposes stable port-Hamiltonian neural networks, a machine learning architecture that incorporates the physical biases of energy conservation or dissipation while guaranteeing global Lyapunov stability of the learned dynamics. Evaluations with illustrative examples and real-world measurement data demonstrate the model's ability to generalize from sparse data, outperforming purely data-driven approaches and avoiding instability issues. In addition, the model's potential for data-driven surrogate modeling is highlighted in application to multi-physics simulation data.
- Abstract(参考訳): 近年, ニューラルネットワークを用いた非線形力学系同定が注目されている。
しかし、純粋にデータ駆動のアプローチは外挿に苦しむことが多く、物理的に理解できない予測をもたらす可能性がある。
さらに、学習力学は不安定性を示すことができ、そのようなモデルを安全かつ堅牢に適用することは困難である。
本稿では、学習力学のグローバルなリプノフ安定性を確保しつつ、エネルギー保存や散逸の物理的バイアスを取り入れた機械学習アーキテクチャである安定ポート・ハミルトンニューラルネットワークを提案する。
実証的な例と実世界の測定データによる評価は、スパースデータからモデルを一般化し、純粋にデータ駆動アプローチを上回り、不安定な問題を避ける能力を示している。
さらに,マルチ物理シミュレーションデータに適用したデータ駆動サロゲートモデリングの可能性を強調した。
関連論文リスト
- Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
本稿では,非線形動的モデリングから情報を明らかにし,それをデータベースモデルに組み込むことにより,標準手法から逸脱する新しいアプローチを提案する。
摂動法による非線形力学現象を明示的に取り入れることにより、予測能力はブルートフォース数値シミュレーションから得られた知識と比較してより現実的で洞察力が高い。
論文 参考訳(メタデータ) (2025-01-21T02:38:28Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Knowledge-based Deep Learning for Modeling Chaotic Systems [7.075125892721573]
本稿では,極端事象とその力学を考察し,知識ベースディープラーニング(KDL)と呼ばれる,深層ニューラルネットワークに基づくモデルを提案する。
提案するKDLは,実データとシミュレーションデータとの協調学習により,カオスシステムを管理する複雑なパターンを学習することができる。
我々は,エルニーニョ海表面温度,サンフアン・デング熱感染,ブヨルノヤ日降水という3つの実世界のベンチマークデータセットを用いて,我々のモデルを検証した。
論文 参考訳(メタデータ) (2022-09-09T11:46:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Bayesian Physics-Informed Neural Networks for real-world nonlinear
dynamical systems [0.0]
ニューラルネットワーク、物理情報モデリング、ベイズ推論を組み合わせることで、データ、物理、不確実性を統合します。
本研究は,ニューラルネットワーク,ベイジアン推論,および両者の組み合わせの固有の長所と短所を明らかにする。
我々は、基礎となる概念や傾向が、より複雑な疾患の状況に一般化されることを期待する。
論文 参考訳(メタデータ) (2022-05-12T19:04:31Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-aware, probabilistic model order reduction with guaranteed
stability [0.0]
実効, 低次元, 粗粒度ダイナミクスモデル学習のための生成的枠組みを提案する。
粒子力学のマルチスケール物理系におけるその有効性と精度を実証する。
論文 参考訳(メタデータ) (2021-01-14T19:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。