論文の概要: PlotMap: Automated Layout Design for Building Game Worlds
- arxiv url: http://arxiv.org/abs/2309.15242v3
- Date: Tue, 30 Jul 2024 04:39:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 22:49:41.780273
- Title: PlotMap: Automated Layout Design for Building Game Worlds
- Title(参考訳): PlotMap:ゲームワールド構築のためのレイアウト自動設計
- Authors: Yi Wang, Jieliang Luo, Adam Gaier, Evan Atherton, Hilmar Koch,
- Abstract要約: 本稿では,世界構築パイプラインにおけるマップ生成手法とは無関係なプロット設備レイアウト設計の余分なレイヤを導入する。
本稿では、CMA-ESによる進化的計算に基づくアプローチと強化学習(RL)に基づくアプローチの2つの方法を提案する。
施設配置タスクのデータセットを生成し,異なる手法を実験・評価するためのジムのような環境を作成し,さらに総合的な実験によって2つの手法を解析する手法を開発した。
- 参考スコア(独自算出の注目度): 4.74497343690049
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: World-building, the process of developing both the narrative and physical world of a game, plays a vital role in the game's experience. Critically-acclaimed independent and AAA video games are praised for strong world-building, with game maps that masterfully intertwine with and elevate the narrative, captivating players and leaving a lasting impression. However, designing game maps that support a desired narrative is challenging, as it requires satisfying complex constraints from various considerations. Most existing map generation methods focus on considerations about gameplay mechanics or map topography, while the need to support the story is typically neglected. As a result, extensive manual adjustment is still required to design a game world that facilitates particular stories. In this work, we approach this problem by introducing an extra layer of plot facility layout design that is independent of the underlying map generation method in a world-building pipeline. Concretely, we define (plot) facility layout tasks as the tasks of assigning concrete locations on a game map to abstract locations mentioned in a given story (plot facilities), following spatial constraints derived from the story. We present two methods for solving these tasks automatically: an evolutionary computation based approach through Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and a Reinforcement Learning (RL) based approach. We develop a method of generating datasets of facility layout tasks, create a gym-like environment for experimenting with and evaluating different methods, and further analyze the two methods with comprehensive experiments, aiming to provide insights for solving facility layout tasks. We will release the code and a dataset containing 10, 000 tasks of different scales.
- Abstract(参考訳): ゲームにおける物語と物理的世界の両方を開発する過程であるワールドビルディングは、ゲーム体験において重要な役割を担っている。
批判的に評価された独立系ゲームとAAAのビデオゲームは、強い世界構築を称賛され、物語に巧みに介入し、高揚させ、プレイヤーを魅了し、持続的な印象を残すゲームマップが提供される。
しかし、様々な考察から複雑な制約を満たす必要があるため、所望の物語をサポートするゲームマップの設計は困難である。
既存の地図生成手法の多くは、ゲームプレイの仕組みや地図地形に関する考察に重点を置いているが、ストーリーをサポートする必要性は通常無視されている。
結果として、特定のストーリーを促進するゲーム世界を設計するためには、手作業による広範囲な調整が依然として必要である。
本研究では,世界構築パイプラインにおけるマップ生成手法に依存しないプロット配置設計の余分なレイヤを導入することで,この問題に対処する。
具体的には,ゲームマップ上の具体的位置を,あるストーリー(プロット施設)に言及された抽象的な場所に割り当てる作業として,ストーリーから生じる空間的制約に従って,(プロット)施設配置タスクを定義する。
本稿では,CMA-ES(Covariance Matrix Adaptation Evolution Strategy)による進化的計算に基づく手法と,強化学習(Reinforcement Learning, RL)に基づく手法を提案する。
施設配置タスクのデータセットを生成し,異なる手法を実験・評価するためのジムのような環境を構築し,さらに総合的な実験により2つの手法を解析し,施設配置タスクを解くための洞察を提供することを目的としている。
コードと10万のタスクを含むデータセットをさまざまなスケールでリリースします。
関連論文リスト
- StoryVerse: Towards Co-authoring Dynamic Plot with LLM-based Character Simulation via Narrative Planning [8.851718319632973]
大きな言語モデル(LLM)は仮想文字の振る舞いを駆動し、プロットは文字と環境間の相互作用から現れる。
著者の著作意図と LLM によるキャラクタシミュレーションの創発的行動とを仲介するプロット作成ワークフローを提案する。
このプロセスは「生きた物語」を作り、様々なゲーム世界の状態に動的に適応し、著者、キャラクターシミュレーション、プレイヤーが共同で物語を作る。
論文 参考訳(メタデータ) (2024-05-17T23:04:51Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
本研究では,屋内環境における埋め込みナビゲーションによる意味領域マッピング手法を提案する。
地域識別を実現するために,視覚言語モデルを用いて地図作成のためのシーン情報を提供する。
グローバルなフレームにエゴセントリックなシーン理解を投影することにより、提案手法は各場所の可能な領域ラベル上の分布としてのセマンティックマップを生成する。
論文 参考訳(メタデータ) (2024-03-11T18:09:50Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z) - SGAligner : 3D Scene Alignment with Scene Graphs [84.01002998166145]
3Dシーングラフの構築は、いくつかの具体的AIアプリケーションのためのシーン表現のトピックとして登場した。
オーバーラップ可能な3次元シーングラフのペアをゼロから部分的に整列させるという基本的な問題に着目する。
そこで我々はSGAlignerを提案する。SGAlignerは3次元シーングラフのペアを組合わせるための最初の方法であり、その組込みシナリオに対して堅牢である。
論文 参考訳(メタデータ) (2023-04-28T14:39:22Z) - Infusing Commonsense World Models with Graph Knowledge [89.27044249858332]
オープンワールドテキストアドベンチャーゲームにおける物語生成の設定について検討する。
基礎となるゲーム状態のグラフ表現は、接地グラフ表現と自然言語記述とアクションの両方を消費し出力するモデルを訓練するために使用することができる。
論文 参考訳(メタデータ) (2023-01-13T19:58:27Z) - Weakly-Supervised Multi-Granularity Map Learning for Vision-and-Language
Navigation [87.52136927091712]
我々は,ロボットエージェントが言語指導によって記述された経路をたどって,環境の中をナビゲートするよう訓練する,現実的かつ困難な問題に対処する。
高精度かつ効率的なナビゲーションを実現するためには,環境オブジェクトの空間的位置と意味情報の両方を正確に表現した地図を構築することが重要である。
より包括的にオブジェクトを表現するために,オブジェクトの細粒度(色,テクスチャなど)とセマンティッククラスの両方を含む多粒度マップを提案する。
論文 参考訳(メタデータ) (2022-10-14T04:23:27Z) - Story Designer: Towards a Mixed-Initiative Tool to Create Narrative
Structures [4.4447051343759965]
本稿では,進化ダンジョンデザイナ(EDD)上に構築された複合開始型共同創造型物語構造ツールであるストーリーデザイナについて述べる。
ストーリーデザイナは、ストーリー・デザイナが物語グラフと呼ばれるグラフ構造に相互接続することで、完全な物語構造を構成するために、ストーリー・デザイナのためのビルディング・ブロックとしてトロープを使用する。
同時に、EDD内で設計されたレベルを物語の構造の制約として使用し、レベル設計と物語の両方に干渉する。
論文 参考訳(メタデータ) (2022-10-11T16:11:32Z) - Automated Isovist Computation for Minecraft [0.0]
アーキテクチャのアイデア,すなわちアイソビストと空間構文をモチベーションとした,新しい自動メトリクスセットを開発する。
これらのメトリクスは、プレイヤーの観点から特定のゲーム状態に対して計算され、ゲームの世界における彼らの体格を考慮に入れられる。
私たちはこれらのメトリクスをMinecraftの3Dブロックワールドに適用する方法を示します。
論文 参考訳(メタデータ) (2022-04-07T21:41:06Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
Curiosity-Conditioned Proximal Trajectories (CCPT)法は、好奇心と模倣学習を組み合わせてエージェントを訓練して探索する。
CCPTが複雑な環境を探索し、ゲームプレイの問題を発見し、その過程におけるデザインの監視を行い、それらをゲームデザイナーに直接認識し、強調する方法について説明する。
論文 参考訳(メタデータ) (2022-02-21T09:08:33Z) - PlotThread: Creating Expressive Storyline Visualizations using
Reinforcement Learning [27.129882090324422]
本稿では,デザイン空間を効率的に探索し,最適なストーリーラインを生成するAIエージェントを訓練するための強化学習フレームワークを提案する。
このフレームワークをベースとしたPlotThreadは、フレキシブルなインタラクションのセットを統合し、ストーリーラインの視覚化を簡単にカスタマイズできるオーサリングツールである。
論文 参考訳(メタデータ) (2020-09-01T06:01:54Z) - Offline Grid-Based Coverage path planning for guards in games [0.0]
本稿では,2次元多角形(穴のある)領域をカバーする新しいアルゴリズムを提案する。
単純なレイアウトから、実際のゲームで使用されるより複雑なマップまで、いくつかのシナリオに関する実験的分析は、優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-01-15T18:28:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。