論文の概要: Curriculum-Driven Edubot: A Framework for Developing Language Learning Chatbots Through Synthesizing Conversational Data
- arxiv url: http://arxiv.org/abs/2309.16804v2
- Date: Sat, 3 Aug 2024 17:13:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 00:15:47.697314
- Title: Curriculum-Driven Edubot: A Framework for Developing Language Learning Chatbots Through Synthesizing Conversational Data
- Title(参考訳): カリキュラム駆動型Edubot:会話データ合成による言語学習チャットボット開発フレームワーク
- Authors: Yu Li, Shang Qu, Jili Shen, Shangchao Min, Zhou Yu,
- Abstract要約: 本稿では,チャットボットの対話的特徴と英語教科書の体系的素材を組み合わせたチャットボットを開発するためのフレームワークであるCurriculum-Driven EduBotを紹介する。
まず、教科書から関連するトピックを抽出し、大きな言語モデルを用いてこれらのトピックに関連する対話を生成する。
- 参考スコア(独自算出の注目度): 23.168347070904318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chatbots have become popular in educational settings, revolutionizing how students interact with material and how teachers teach. We present Curriculum-Driven EduBot, a framework for developing a chatbot that combines the interactive features of chatbots with the systematic material of English textbooks to assist students in enhancing their conversational skills. We begin by extracting pertinent topics from textbooks and using large language models to generate dialogues related to these topics. We then fine-tune an open-source model using our generated conversational data to create our curriculum-driven chatbot. User studies demonstrate that EduBot outperforms ChatGPT in leading curriculum-based dialogues and adapting its dialogue to match the user's English proficiency level. By combining traditional textbook methodologies with conversational AI, our approach offers learners an interactive tool that aligns with their curriculum and provides user-tailored conversation practice. This facilitates meaningful student-bot dialogues and enriches the overall learning experience within the curriculum's pedagogical framework.
- Abstract(参考訳): チャットボットは、学生が教材とどのように相互作用するか、そして教師が教える方法に革命をもたらした。
本稿では,チャットボットの対話的特徴と英語教科書の体系的な素材を組み合わせたチャットボットを開発するためのフレームワークであるCurriculum-Driven EduBotについて紹介する。
まず、教科書から関連するトピックを抽出し、大きな言語モデルを用いてこれらのトピックに関連する対話を生成する。
そして、生成された会話データを使ってオープンソースモデルを微調整して、カリキュラム駆動のチャットボットを作成します。
ユーザスタディによると、EduBotは、カリキュラムベースの対話においてChatGPTよりも優れており、その対話をユーザの英語の習熟度に合わせるために適応している。
従来の教科書手法と会話型AIを組み合わせることで,学習者がカリキュラムに合わせた対話型ツールを提供し,ユーザに適した会話実践を提供する。
これにより、意味のある学生とボットの対話が促進され、カリキュラムの教育的枠組みにおける全体的な学習経験が強化される。
関連論文リスト
- Book2Dial: Generating Teacher-Student Interactions from Textbooks for
Cost-Effective Development of Educational Chatbots [37.304476231479725]
教科書の集合に根ざした合成教師と学生の相互作用を生成するための枠組みを提案する。
我々は、このような対話が満たすべき様々な品質基準を強調し、プロンプトや微調整の大きな言語モデルに依存するいくつかのアプローチを比較した。
我々の研究は、サイズと品質のバランスをとる会話データを合成する今後の取り組みに対する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-05T20:12:05Z) - Developing Effective Educational Chatbots with ChatGPT prompts: Insights
from Preliminary Tests in a Case Study on Social Media Literacy (with
appendix) [43.55994393060723]
ChatGPTのようなゼロショット学習機能を持つ言語学習モデルの最近の進歩は、教育チャットボットを開発する新たな可能性を示している。
本稿では,混合ターンチャットボットのインタラクションを可能にするシンプルなシステムを用いたケーススタディを提案する。
本稿では,ChatGPTが複数の相互接続型学習目標を追求し,文化,年齢,教育レベルなどのユーザ特性に教育活動を適応させ,多様な教育戦略や会話スタイルを活用できる能力について検討する。
論文 参考訳(メタデータ) (2023-06-18T22:23:18Z) - ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented
Instruction Tuning for Digital Human [76.62897301298699]
ChatPLUGは、デジタルヒューマンアプリケーションのための中国のオープンドメイン対話システムである。
モデルネームは, 自動評価と人的評価の両方において, 最先端の中国語対話システムより優れていることを示す。
高速な推論でスマートスピーカーやインスタントメッセージアプリケーションのような実世界のアプリケーションにモデルネームをデプロイします。
論文 参考訳(メタデータ) (2023-04-16T18:16:35Z) - User Adaptive Language Learning Chatbots with a Curriculum [55.63893493019025]
語彙的に制約されたデコーディングをダイアログシステムに適用し、ダイアログシステムに対して、その生成した発話にカリキュラムに準拠した単語やフレーズを含めるよう促す。
評価の結果,カリキュラム注入によるダイアログシステムにより,対象語に対する生徒の理解が向上し,英語実践への関心が高まることが示された。
論文 参考訳(メタデータ) (2023-04-11T20:41:41Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chatは、知識グラフ上のポインタネットワークと、事前訓練された言語モデルを組み合わせた、ポインタネットワーク誘導生成対話モデルである。
PK-Chatが対話で生成した単語は、単語リストの予測と外部知識グラフ知識の直接予測から導かれる。
PK-Chatに基づく対話システムは、地球科学の学術シナリオ向けに構築されている。
論文 参考訳(メタデータ) (2023-04-02T18:23:13Z) - Build-a-Bot: Teaching Conversational AI Using a Transformer-Based Intent
Recognition and Question Answering Architecture [15.19996462016215]
本稿では、自然言語パイプラインを用いて、独自の学校カリキュラムに基づく質問に答えるためにカスタマイズされたモデルを訓練することで、人工知能の原理を学習するためのインタフェースを提案する。
このパイプラインは、AIエージェントを作成しながら、これらのプロセスのそれぞれを通じて、学生のデータ収集、データ拡張、意図認識、質問応答を教える。
論文 参考訳(メタデータ) (2022-12-14T22:57:44Z) - Using Chatbots to Teach Languages [43.866863322607216]
我々のシステムは、ユーザの言語能力に即時に適応できる。
ユーザが誤りから学ぶのに役立つ自動文法エラーフィードバックを提供する。
我々の次のステップは、強化学習アルゴリズムを用いてユーザープロファイル情報に適応させることです。
論文 参考訳(メタデータ) (2022-07-31T07:01:35Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
ごく少数の例を使って会話を学ぶことは、会話型AIにおける大きな課題である。
現在の最良の会話モデルは、良いチャットシャッター(例:BlenderBot)またはゴール指向システム(例:MinTL)である。
グラデーションベースの微調整を必要とせず、学習の唯一の源としていくつかの例を用いるプロンプトベースの数ショット学習を提案する。
論文 参考訳(メタデータ) (2021-10-15T14:36:45Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
対話モデリングの観点から,従来の手法を検討した。
対話理解タスクで広く使用されている対話モデリングの3つの典型的なパターンについて議論します。
論文 参考訳(メタデータ) (2021-03-04T15:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。