論文の概要: Learning Quantum Processes with Quantum Statistical Queries
- arxiv url: http://arxiv.org/abs/2310.02075v2
- Date: Wed, 14 Feb 2024 12:29:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-02-15 19:36:37.298959
- Title: Learning Quantum Processes with Quantum Statistical Queries
- Title(参考訳): 量子統計クエリによる量子プロセス学習
- Authors: Chirag Wadhwa and Mina Doosti
- Abstract要約: 本稿では,量子統計クエリモデル内で量子プロセス学習を研究するための最初の学習フレームワークを紹介する。
このフレームワークにより、任意の量子プロセスに対して、証明可能な性能保証を伴う効率的なQPSQ学習者を提案することができる。
この研究は、量子プロセスの学習可能性を理解するための重要なステップであり、セキュリティへの影響に光を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning complex quantum processes is a central challenge in many areas of
quantum computing and quantum machine learning, with applications in quantum
benchmarking, cryptanalysis, and variational quantum algorithms. This paper
introduces the first learning framework for studying quantum process learning
within the Quantum Statistical Query (QSQ) model, providing the first formal
definition of statistical queries to quantum processes (QPSQs). The framework
allows us to propose an efficient QPSQ learner for arbitrary quantum processes
accompanied by a provable performance guarantee. We also provide numerical
simulations to demonstrate the efficacy of this algorithm. In our new
framework, we prove exponential query complexity lower bounds for learning
unitary 2-designs, and a doubly exponential lower bound for learning
haar-random unitaries. The practical relevance of this framework is exemplified
through application in cryptography, highlighting vulnerabilities of a large
class of Classical-Readout Quantum Physical Unclonable Functions (CR-QPUFs),
while proving a secure instantiation of CR-QPUFs must exist. This addresses an
important open question in the field of quantum hardware security. This work
marks a significant step towards understanding the learnability of quantum
processes and shedding light on their security implications.
- Abstract(参考訳): 複雑な量子プロセスの学習は、量子コンピューティングと量子機械学習の多くの領域において中心的な課題であり、量子ベンチマーク、暗号解析、変分量子アルゴリズムに応用されている。
本稿では,量子統計クエリ(QSQ)モデル内で量子プロセス学習を研究するための最初の学習フレームワークを紹介し,量子プロセス(QPSQ)に対する統計クエリの最初の公式定義を提供する。
このフレームワークにより,任意の量子プロセスに対する効率的なqpsq学習器の提案が可能となる。
また,本アルゴリズムの有効性を示す数値シミュレーションも提供する。
新たなフレームワークでは,一意的な2つの設計を学習するための指数的クエリ複雑性の低い境界,一意なユニタリーを学習するための2つの指数的低境界を証明した。
このフレームワークの実践的関連性は暗号の応用を通じて実証されており、CR-QPUFのセキュアなインスタンス化を証明しつつ、CR-QPUFの大規模クラスにおける脆弱性を強調している。
これは量子ハードウェアセキュリティの分野における重要なオープンな問題に対処する。
この研究は、量子プロセスの学習可能性を理解するための重要なステップであり、セキュリティへの影響に光を当てている。
関連論文リスト
- Hamiltonian Dynamics Learning: A Scalable Approach to Quantum Process Characterization [6.741097425426473]
短時間のハミルトン力学に特化して設計された効率的な量子プロセス学習法を提案する。
我々は、量子機械学習の応用を実証し、このプロトコルは、ユニタリ変換を直接学習することで、変分量子ニューラルネットワークの効率的なトレーニングを可能にする。
この研究は、実用的な量子力学学習のための新しい理論的基盤を確立し、短期的およびフォールトトレラントな量子コンピューティングの両方においてスケーラブルな量子プロセスのキャラクタリゼーションの道を開いた。
論文 参考訳(メタデータ) (2025-03-31T14:50:00Z) - Quantum framework for Reinforcement Learning: integrating Markov Decision Process, quantum arithmetic, and trajectory search [0.6062751776009752]
本稿では、強化学習(RL)タスクに対処する量子フレームワークを提案する。
量子の概念と量子探索アルゴリズムを用いることで、この研究は量子領域内でのエージェント-環境相互作用の実装と最適化を示す。
論文 参考訳(メタデータ) (2024-12-24T06:28:34Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
オープン量子系の基本理論の簡潔な要約を提供する。
次に、最近の量子アルゴリズムに関する議論を掘り下げる。
我々は,本分野の現実的な化学,生物,物質システムへの適用性を実証し,関連する応用の議論を締めくくった。
論文 参考訳(メタデータ) (2024-06-07T19:02:22Z) - Quantum Visual Feature Encoding Revisited [8.839645003062456]
本稿では,量子機械学習の初期段階である量子視覚符号化戦略を再考する。
根本原因を調べた結果,既存の量子符号化設計では符号化処理後の視覚的特徴の情報保存が不十分であることが判明した。
我々は、このギャップを最小限に抑えるために、量子情報保存と呼ばれる新しい損失関数を導入し、量子機械学習アルゴリズムの性能を向上した。
論文 参考訳(メタデータ) (2024-05-30T06:15:08Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
初期の量子コンピューティングの領域において重要な取り組みであるクロスプラットフォーム検証は、同一のアルゴリズムを実行する2つの不完全な量子デバイスとの類似性を特徴づけようと試みている。
本稿では,この課題におけるデータの形式化が2つの異なるモダリティを具現化する,革新的なマルチモーダル学習手法を提案する。
我々はこれらのモダリティから知識を独立して抽出するマルチモーダルニューラルネットワークを考案し、続いて融合操作により包括的データ表現を生成する。
論文 参考訳(メタデータ) (2023-11-07T04:35:03Z) - Learning unitaries with quantum statistical queries [0.0]
量子統計的クエリからユニタリ演算子を学習するためのアルゴリズムをいくつか提案する。
量子統計的クエリを利用して、パウリ弦の部分集合上のユニタリのフーリエ質量を推定する。
量子統計クエリーは、様々なユニタリ学習タスクに統一的なフレームワークを提供することを示す。
論文 参考訳(メタデータ) (2023-10-03T17:56:07Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MOREは、測定と相関に基づく変分量子多重分類器の略である。
我々はQiskit Pythonライブラリを使ってMOREを実装し、ノイズフリーとノイズの多い量子システムの両方で広範囲にわたる実験により評価する。
論文 参考訳(メタデータ) (2023-07-21T19:33:10Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Unclonability and Quantum Cryptanalysis: From Foundations to
Applications [0.0]
不規則性(Unclonability)は、量子理論の基本概念であり、量子情報の主要な非古典的性質の1つである。
我々は、量子世界、すなわち量子物理学的不閉性(quantum physical unclonability)という新しい非閉性の概念を導入する。
本稿では、暗号資源として、この新しいタイプの無拘束性(unclonability)のいくつかの応用について論じ、確実に安全な量子プロトコルを設計する。
論文 参考訳(メタデータ) (2022-10-31T17:57:09Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - Quantum variational learning for entanglement witnessing [0.0]
この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
論文 参考訳(メタデータ) (2022-05-20T20:14:28Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
NISQコンピュータに適した3つの量子機械学習アプリケーションを開発し研究する。
これらのアルゴリズムは本質的に変動し、基礎となる量子機械学習モデルとしてパラメータ化量子回路(PQC)を使用する。
近似量子クローニングの領域において,データを自然界において量子化する変分アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-19T09:26:57Z) - Quantum Phase Recognition via Quantum Kernel Methods [6.3286116342955845]
本稿では,量子位相認識問題における量子学習アルゴリズムのパワーについて考察する。
我々は, 対称性保護位相と対称性破壊位相の認識を含む, 様々な問題に対して, アルゴリズムを数値的にベンチマークする。
本結果は,多粒子系における量子位相遷移の予測における量子機械学習の能力を強調した。
論文 参考訳(メタデータ) (2021-11-15T06:17:52Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - A Unified Framework for Quantum Supervised Learning [0.7366405857677226]
トレーニング可能な量子回路を用いた教師あり学習のための埋め込み型フレームワークを提案する。
これらのアプローチの目的は、異なるクラスからヒルベルト空間の分離された位置へ、量子的特徴写像を通してデータをマッピングすることである。
我々は、明示的なアプローチと他の量子教師あり学習モデルとの本質的な接続を確立する。
論文 参考訳(メタデータ) (2020-10-25T18:43:13Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Quantum Annealing for Semi-Supervised Learning [5.714334716737985]
セミ教師付き学習は、ラベル付きデータとラベルなしデータの両方をトレーニングに使う機械学習技術である。
本稿では,量子アニール法を用いて,グラフに基づく半教師付き学習手法を提案し,理論的に解析する。
本稿では,ラベル付きデータの一部(20%)が関与している場合でも,本手法の有効性を示唆する2つの分類例を示す。
論文 参考訳(メタデータ) (2020-03-27T15:09:44Z) - Statistical Limits of Supervised Quantum Learning [90.0289160657379]
精度の制約を考慮すると、教師付き学習のための量子機械学習アルゴリズムは入力次元における多対数ランタイムを達成できないことを示す。
より効率的な古典的アルゴリズムよりも、教師あり学習のための量子機械学習アルゴリズムの方が、ほとんどの場合スピードアップできると結論付けている。
論文 参考訳(メタデータ) (2020-01-28T17:35:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。