論文の概要: Physics Informed Neural Network Code for 2D Transient Problems
(PINN-2DT) Compatible with Google Colab
- arxiv url: http://arxiv.org/abs/2310.03755v1
- Date: Sun, 24 Sep 2023 07:08:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 04:23:13.473225
- Title: Physics Informed Neural Network Code for 2D Transient Problems
(PINN-2DT) Compatible with Google Colab
- Title(参考訳): Google Colabと互換性のある2次元過渡問題のための物理情報ニューラルネットワークコード(PINN-2DT)
- Authors: Pawe{\l} Maczuga, Maciej Skocze\'n, Przemys{\l}aw Ro\.znawski, Filip
T{\l}uszcz, Marcin Szubert, Marcin {\L}o\'s, Witold Dzwinel, Keshav Pingali,
Maciej Paszy\'nski
- Abstract要約: 物理情報ニューラルネットワーク(英: Physics Informed Neural Network)は、2次元矩形領域における過渡現象のシミュレーション環境である。
クラウド環境での自動実行を可能にするGoogle Colabと互換性がある。
a)非定常熱伝達、(b)津波をモデル化する波動方程式、(c)熱インバージョンを含む大気シミュレーション、(d)腫瘍成長シミュレーション。
- 参考スコア(独自算出の注目度): 0.1806830971023738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an open-source Physics Informed Neural Network environment for
simulations of transient phenomena on two-dimensional rectangular domains, with
the following features: (1) it is compatible with Google Colab which allows
automatic execution on cloud environment; (2) it supports two dimensional
time-dependent PDEs; (3) it provides simple interface for definition of the
residual loss, boundary condition and initial loss, together with their
weights; (4) it support Neumann and Dirichlet boundary conditions; (5) it
allows for customizing the number of layers and neurons per layer, as well as
for arbitrary activation function; (6) the learning rate and number of epochs
are available as parameters; (7) it automatically differentiates PINN with
respect to spatial and temporal variables; (8) it provides routines for
plotting the convergence (with running average), initial conditions learnt, 2D
and 3D snapshots from the simulation and movies (9) it includes a library of
problems: (a) non-stationary heat transfer; (b) wave equation modeling a
tsunami; (c) atmospheric simulations including thermal inversion; (d) tumor
growth simulations.
- Abstract(参考訳): We present an open-source Physics Informed Neural Network environment for simulations of transient phenomena on two-dimensional rectangular domains, with the following features: (1) it is compatible with Google Colab which allows automatic execution on cloud environment; (2) it supports two dimensional time-dependent PDEs; (3) it provides simple interface for definition of the residual loss, boundary condition and initial loss, together with their weights; (4) it support Neumann and Dirichlet boundary conditions; (5) it allows for customizing the number of layers and neurons per layer, as well as for arbitrary activation function; (6) the learning rate and number of epochs are available as parameters; (7) it automatically differentiates PINN with respect to spatial and temporal variables; (8) it provides routines for plotting the convergence (with running average), initial conditions learnt, 2D and 3D snapshots from the simulation and movies (9) it includes a library of problems:
(a)非定常熱伝達
(b)津波をモデル化する波動方程式
(c)熱インバージョンを含む大気シミュレーション
(d)腫瘍増殖シミュレーション。
関連論文リスト
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems [1.6494451064539348]
本稿では、数値データや実験データによるデータ駆動事前学習と、ハミルトン駆動最適化の第2段階を含む、ニューラル量子状態(NQS)のハイブリッド最適化手法を提案する。
我々の研究は、ニューラル量子状態の信頼性と効率的な最適化の道を開いた。
論文 参考訳(メタデータ) (2024-05-31T17:55:27Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
薄型シェルを用いた新しい擬似布シミュレータであるNeuralClothSimを提案する。
メモリ効率の高い解法はニューラル変形場と呼ばれる新しい連続座標に基づく表面表現を演算する。
論文 参考訳(メタデータ) (2023-08-24T17:59:54Z) - Fourier Neural Operator Surrogate Model to Predict 3D Seismic Waves
Propagation [0.0]
我々は、SEM3Dという高忠実度シミュレーションコードを用いて、3万の異なる地質が生成する地動の広範なデータベースを構築している。
フーリエ・ニューラル・オペレーターは,基礎となる地質が大きな不均一性を示す場合でも,正確な接地運動を実現できることを示す。
データベースの一般化により,地質学的特徴が地盤運動に与える影響を評価するために,我々のモデルが利用できると信じている。
論文 参考訳(メタデータ) (2023-04-20T12:01:58Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Rotation Invariant Graph Neural Networks using Spin Convolutions [28.4962005849904]
機械学習アプローチは、密度汎関数理論(DFT)を計算的に効率的に近似する可能性がある。
グラフニューラルネットワークにおいて,隣り合う原子の集合間の角度情報をモデル化するための新しい手法を提案する。
結果は大規模なOpen Catalyst 2020データセットで実証されている。
論文 参考訳(メタデータ) (2021-06-17T14:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。