論文の概要: Intrinsic Gaussian Vector Fields on Manifolds
- arxiv url: http://arxiv.org/abs/2310.18824v2
- Date: Sun, 31 Mar 2024 14:12:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 15:15:12.094270
- Title: Intrinsic Gaussian Vector Fields on Manifolds
- Title(参考訳): 多様体上の固有ガウスベクトル場
- Authors: Daniel Robert-Nicoud, Andreas Krause, Viacheslav Borovitskiy,
- Abstract要約: 得られたホッジ・マタン・ガウスベクトル場を二次元球面とハイパートーラス上に展開するのに必要となるプリミティブを提供する。
ガウスベクトル場は、前述した外生的場よりもかなり洗練された帰納的バイアスを構成することを示す。
- 参考スコア(独自算出の注目度): 40.20536208199638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various applications ranging from robotics to climate science require modeling signals on non-Euclidean domains, such as the sphere. Gaussian process models on manifolds have recently been proposed for such tasks, in particular when uncertainty quantification is needed. In the manifold setting, vector-valued signals can behave very differently from scalar-valued ones, with much of the progress so far focused on modeling the latter. The former, however, are crucial for many applications, such as modeling wind speeds or force fields of unknown dynamical systems. In this paper, we propose novel Gaussian process models for vector-valued signals on manifolds that are intrinsically defined and account for the geometry of the space in consideration. We provide computational primitives needed to deploy the resulting Hodge-Mat\'ern Gaussian vector fields on the two-dimensional sphere and the hypertori. Further, we highlight two generalization directions: discrete two-dimensional meshes and "ideal" manifolds like hyperspheres, Lie groups, and homogeneous spaces. Finally, we show that our Gaussian vector fields constitute considerably more refined inductive biases than the extrinsic fields proposed before.
- Abstract(参考訳): ロボット工学から気候科学まで様々な応用は、球体のような非ユークリッド領域のモデリング信号を必要とする。
多様体上のガウス過程モデルは、特に不確実量化が必要なとき、そのような問題に対して最近提案されている。
多様体の設定では、ベクトル値の信号はスカラー値の信号とは大きく異なる振る舞いをすることができる。
しかし、前者は風速や未知の力学系の力場をモデル化するなど、多くの応用において重要である。
本稿では,本質的に定義された多様体上のベクトル値信号に対する新しいガウス過程モデルを提案する。
2次元球面とハイパートリー上でのHodge-Mat\'ern Gaussianベクトル場の展開に必要な計算的プリミティブを提供する。
さらに、離散2次元メッシュと超球面、リー群、同次空間のような「理想」多様体の2つの一般化方向を強調した。
最後に、ガウスベクトル場は、前述した外生的場よりもかなり洗練された帰納的バイアスを構成することを示す。
関連論文リスト
- Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
我々は,本質的なガウス過程が実際により優れた性能を発揮することを示す。
我々の研究は、データ効率の異なるレベルを区別するために、よりきめ細かい分析が必要であることを示している。
論文 参考訳(メタデータ) (2023-09-19T20:30:58Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Building Neural Networks on Matrix Manifolds: A Gyrovector Space
Approach [8.003578990152945]
我々はSPDとグラスマン多様体上にニューラルネットワークを構築するための新しいモデルと層を提案する。
本稿では,人間の行動認識と知識グラフ補完という2つの応用にアプローチの有効性を示す。
論文 参考訳(メタデータ) (2023-05-08T09:10:11Z) - REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
Dynamics [0.0]
本稿では,連続体力学系をシミュレーションする回転同変マルチスケールモデルREMuS-GNNを紹介する。
楕円円柱まわりの非圧縮性流れについて,本手法の実証と評価を行った。
論文 参考訳(メタデータ) (2022-05-05T16:20:37Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
我々はガウス過程の適用性を高める技術を開発した。
この観点から構築した効率的な近似を幅広く導入する。
非ユークリッド空間上のガウス過程モデルの集合を開発する。
論文 参考訳(メタデータ) (2022-02-22T01:42:57Z) - Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
Equivariant Projected Kernels [108.60991563944351]
本稿では、ベクトル値のガウス過程を幾何学に忠実に誘導するゲージ同変カーネルの構築法を提案する。
我々は,変分推論などの標準ガウスプロセストレーニング手法を,この設定に拡張する。
論文 参考訳(メタデータ) (2021-10-27T13:31:10Z) - Intrinsic Gaussian Processes on Manifolds and Their Accelerations by
Symmetry [9.773237080061815]
既存の手法は主に熱核推定のための低次元制約領域に焦点を当てている。
本研究は一般方程式上でGPを構築するための本質的なアプローチを提案する。
本手法は指数写像を用いてブラウン運動サンプル経路をシミュレーションすることにより熱核を推定する。
論文 参考訳(メタデータ) (2020-06-25T09:17:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。