論文の概要: REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
Dynamics
- arxiv url: http://arxiv.org/abs/2205.07852v1
- Date: Thu, 5 May 2022 16:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-22 17:40:42.366771
- Title: REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
Dynamics
- Title(参考訳): REMuS-GNN:連続体力学シミュレーションのための回転同変モデル
- Authors: Mario Lino, Stati Fotiadis, Anil A. Bharath and Chris Cantwell
- Abstract要約: 本稿では,連続体力学系をシミュレーションする回転同変マルチスケールモデルREMuS-GNNを紹介する。
楕円円柱まわりの非圧縮性流れについて,本手法の実証と評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical simulation is an essential tool in many areas of science and
engineering, but its performance often limits application in practice or when
used to explore large parameter spaces. On the other hand, surrogate deep
learning models, while accelerating simulations, often exhibit poor accuracy
and ability to generalise. In order to improve these two factors, we introduce
REMuS-GNN, a rotation-equivariant multi-scale model for simulating continuum
dynamical systems encompassing a range of length scales. REMuS-GNN is designed
to predict an output vector field from an input vector field on a physical
domain discretised into an unstructured set of nodes. Equivariance to rotations
of the domain is a desirable inductive bias that allows the network to learn
the underlying physics more efficiently, leading to improved accuracy and
generalisation compared with similar architectures that lack such symmetry. We
demonstrate and evaluate this method on the incompressible flow around
elliptical cylinders.
- Abstract(参考訳): 数値シミュレーションは科学や工学の多くの分野において欠かせないツールであるが、その性能は実際や大きなパラメータ空間の探索に使用される場合に制限されることが多い。
一方、シミュレーションを加速する一方で、深層学習モデルは、しばしば精度が悪く、一般化する能力も低い。
これらの2つの要因を改善するために,長さスケールを含む連続体力学系をシミュレーションする回転同変マルチスケールモデルREMuS-GNNを導入する。
REMuS-GNNは、未構造化ノードに識別された物理領域上の入力ベクトル場から出力ベクトル場を予測するように設計されている。
ドメインの回転に等しくなることは、ネットワークが基礎となる物理をより効率的に学習できる望ましい帰納バイアスであり、そのような対称性を持たない類似のアーキテクチャと比較して精度と一般化が向上する。
本手法は, 楕円円柱まわりの非圧縮性流れについて実証し, 評価する。
関連論文リスト
- Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
離散同変グラフニューラルネットワーク(DEGNN)を提案する。
具体的には、幾何学的特徴を置換不変な埋め込みに変換することによって、このような離散同変メッセージパッシングを構築することができることを示す。
DEGNNはデータ効率が良く、少ないデータで学習でき、観測不能な向きなどのシナリオをまたいで一般化できることを示す。
論文 参考訳(メタデータ) (2024-06-24T03:37:51Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
本稿では、偏微分方程式(PDE)の物理知識を取り入れた物理強化型ニューラル演算子(PENO)について、正確に流れのダイナミクスをモデル化する。
提案手法は,2つの異なる3次元乱流データに対して,その性能評価を行う。
論文 参考訳(メタデータ) (2024-05-31T20:05:17Z) - Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators [12.165876595927452]
ユニバーサル物理変換器(Universal Physics Transformer、UPT)は、幅広い問題に対して効率的かつ統一的な学習パラダイムである。
UPTはグリッドやパーティクルベースの潜在メッシュを使わずに動作し、構造や粒子間の柔軟性を実現する。
メッシュ型流体シミュレーションおよび定常レイノルズ平均Navier-StokesシミュレーションにおけるUTTの適用性と有効性を示した。
論文 参考訳(メタデータ) (2024-02-19T18:52:13Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Spatial Attention Kinetic Networks with E(n)-Equivariance [0.951828574518325]
回転、翻訳、反射、n次元幾何学空間上の置換と等価なニューラルネットワークは、物理モデリングにおいて有望であることを示している。
本稿では, エッジベクトルの線形結合をニューラルネットワークでパラメトリケートし, 等価性を実現するための, 簡易な代替関数形式を提案する。
E(n)-等価性を持つ空間的注意運動ネットワーク(SAKE)を設計する。
論文 参考訳(メタデータ) (2023-01-21T05:14:29Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Hybrid Physical-Neural ODEs for Fast N-body Simulations [0.22419496088582863]
我々は、宇宙論的N体シミュレーションのためのParticle-Meshスキームから生じる小規模近似を補正する新しいスキームを提案する。
提案手法は相互相関係数においてPGDよりも優れており,シミュレーション設定の変化に対してより堅牢であることがわかった。
論文 参考訳(メタデータ) (2022-07-12T13:06:06Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。