論文の概要: Exactly conservative physics-informed neural networks and deep operator
networks for dynamical systems
- arxiv url: http://arxiv.org/abs/2311.14131v1
- Date: Thu, 23 Nov 2023 17:59:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 16:38:37.051819
- Title: Exactly conservative physics-informed neural networks and deep operator
networks for dynamical systems
- Title(参考訳): 物理インフォームドニューラルネットワークと動的システムのためのディープ・オペレーター・ネットワーク
- Authors: Elsa Cardoso-Bihlo and Alex Bihlo
- Abstract要約: 本稿では,物理インフォームド・ニューラルネットワークと物理インフォームド・ディープ・オペレーター・ネットワークを正確にトレーニングする手法を提案する。
物理インフォームドニューラルネットワークと物理インフォームドな動的システムのためのディープ・オペレーター・ネットワークは、数理科学から現実のいくつかの問題に対する非保守的問題を著しく上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a method for training exactly conservative physics-informed
neural networks and physics-informed deep operator networks for dynamical
systems. The method employs a projection-based technique that maps a candidate
solution learned by the neural network solver for any given dynamical system
possessing at least one first integral onto an invariant manifold. We
illustrate that exactly conservative physics-informed neural network solvers
and physics-informed deep operator networks for dynamical systems vastly
outperform their non-conservative counterparts for several real-world problems
from the mathematical sciences.
- Abstract(参考訳): 本稿では,自然力学系に対する厳密な物理不定形ニューラルネットワークと物理不定形深層作用素ネットワークの訓練手法を提案する。
この方法は、ニューラルネットワークソルバが学習した候補解を、少なくとも1つの第一積分を持つ任意の力学系に対して不変多様体にマッピングするプロジェクションベースの手法を用いる。
物理インフォームドニューラルネットワークと物理インフォームドな動的システムのためのディープ・オペレーター・ネットワークは、数理科学から現実のいくつかの問題に対する非保守的問題を著しく上回っている。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
ニューラルネットワークがそのようなシステムを学ぶ際に提供するアーキテクチャの規則化について論じる。
動的システムをモデル化する際の複数の問題を解決するために,レイヤ数が少ない単純な座標ネットワークが利用できることを示す。
論文 参考訳(メタデータ) (2023-03-10T06:21:24Z) - An Analysis of Physics-Informed Neural Networks [0.0]
我々は物理システム – 物理インフォームドニューラルネットワーク – に対する解を近似する新しいアプローチを提案する。
人工ニューラルネットワークの概念を導入し、目的関数を定義し、最適化戦略について議論する。
偏微分方程式は、問題の損失関数の制約として含まれ、ネットワークがモデリングしている物理系の力学の知識にアクセスできる。
論文 参考訳(メタデータ) (2023-03-06T04:45:53Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Physics-informed ConvNet: Learning Physical Field from a Shallow Neural
Network [0.180476943513092]
マルチ物理システムのモデル化と予測は、避けられないデータ不足とノイズのために依然として課題である。
物理インフォームド・コンボリューション・ネットワーク(PICN)と呼ばれる新しいフレームワークは、CNNの観点から推奨されている。
PICNは物理インフォームド機械学習において、代替のニューラルネットワークソルバとなる可能性がある。
論文 参考訳(メタデータ) (2022-01-26T14:35:58Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Deep physical neural networks enabled by a backpropagation algorithm for
arbitrary physical systems [3.7785805908699803]
本稿では,ディープニューラルネットワークモデルを実現するための急進的な代替手段を提案する。
ニューラルネットとして機能する制御可能な物理システムのシーケンスを効率的に学習するために,物理認識トレーニングと呼ばれるハイブリッド物理デジタルアルゴリズムを導入する。
論文 参考訳(メタデータ) (2021-04-27T18:00:02Z) - A deep learning theory for neural networks grounded in physics [2.132096006921048]
ニューロモルフィックアーキテクチャ上で大規模で高速で効率的なニューラルネットワークを構築するには、それらを実装および訓練するためのアルゴリズムを再考する必要がある。
私たちのフレームワークは、非常に幅広いモデル、すなわち状態やダイナミクスが変動方程式によって記述されるシステムに適用されます。
論文 参考訳(メタデータ) (2021-03-18T02:12:48Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。