論文の概要: Gaussian Boson Sampling for binary optimization
- arxiv url: http://arxiv.org/abs/2312.07235v1
- Date: Tue, 12 Dec 2023 13:00:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 15:59:33.143971
- Title: Gaussian Boson Sampling for binary optimization
- Title(参考訳): 二進最適化のためのガウスボソンサンプリング
- Authors: Jean Cazalis (1), Yahui Chai (2), Karl Jansen (2 and 3), Stefan K\"uhn
(2), Tirth Shah (1) ((1) Q.ANT GmbH, (2) CQTA, Deutsches
Elektronen-Synchrotron DESY, (3) Cyprus Institute)
- Abstract要約: 本研究では,条件付き値-リスクコスト関数を用いた変分量子固有解法を用いる。
ランダムに生成されたインスタンス上で数値シミュレーションを行うことで、原理の証明を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we consider a Gaussian Boson Sampler for solving a Flight Gate
Assignment problem. We employ a Variational Quantum Eigensolver approach using
the Conditional Value-at-risk cost function. We provide proof of principle by
carrying out numerical simulations on randomly generated instances.
- Abstract(参考訳): 本研究では,飛行ゲート割り当て問題に対するガウスボソンサンプリングについて考察する。
条件付き値-リスクコスト関数を用いた変分量子固有解法を用いる。
ランダムに生成されたインスタンス上で数値シミュレーションを行うことで、原理の証明を行う。
関連論文リスト
- Variational Tensor Network Simulation of Gaussian Boson Sampling and Beyond [0.0]
一般連続変数サンプリング問題に対する古典的シミュレーションツールを提案する。
我々はサンプリング問題を、単純な少数体ハミルトンの基底状態を見つけるための問題として再定式化する。
我々はガウスボソンサンプリングをシミュレートして手法を検証する。
論文 参考訳(メタデータ) (2024-10-24T13:43:06Z) - Classical modelling of a lossy Gaussian bosonic sampler [0.0]
損失GBSインスタンスの近似古典シミュレーションのためのアルゴリズムを提案する。
アルゴリズムの複雑さは、項数が固定されたときのモードの数を絞っている。
量子的優位性を証明したと主張する最近の実験では、これらの条件が満たされている。
論文 参考訳(メタデータ) (2024-04-01T09:19:27Z) - Quantum-inspired classical algorithm for graph problems by Gaussian
boson sampling [2.5496329090462626]
グラフ理論問題に応用可能な量子インスピレーション付き古典アルゴリズムを提案する。
ガウスボソンサンプリング器で符号化されるグラフの隣接行列は非負であり、量子干渉を必要としない。
論文 参考訳(メタデータ) (2023-02-01T16:02:31Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
我々は、係数に応じてハミルトン式からサンプリングしてランダムな積公式を構築するqDriftプロトコルを導入する。
サンプリング段階における個別のシミュレーションコストを考慮し、同じ精度でシミュレーションコストを削減可能であることを示す。
格子核効果場理論を用いて数値シミュレーションを行った結果, 実験結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T15:06:32Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
キタエフスピンモデルは、自由フェルミオンへの写像を通じて、あるパラメータ状態において正確に解けることで知られている。
古典的なシミュレーションを用いて、このフェルミオン表現を利用する新しい変分アンザッツを探索する。
また、量子コンピュータ上での非アベリアオンをシミュレートするための結果の意味についてもコメントする。
論文 参考訳(メタデータ) (2022-04-11T18:00:01Z) - Certification of Gaussian Boson Sampling via graph theory [4.063872661554895]
実ガウスボソンサンプリング装置の光子計数とグラフ中の完全マッチング数との接続を利用する。
本フレームワークでは,グラフ特徴ベクトルとグラフカーネルの分布を利用した2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-15T20:22:28Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
本研究では,空間統計学から広く用いられている点過程の適応センシングについて検討する。
我々は、この強度関数を、特別に構築された正の基底で表される、歪んだガウス過程のサンプルとしてモデル化する。
我々の適応センシングアルゴリズムはランゲヴィン力学を用いており、後続サンプリング(textscCox-Thompson)と後続サンプリング(textscTop2)の原理に基づいている。
論文 参考訳(メタデータ) (2021-10-21T14:47:06Z) - Quantum Sub-Gaussian Mean Estimator [0.0]
実数値確率変数の平均を推定する新しい量子アルゴリズムを提案する。
我々の推定器は古典的なi.d.サンプルの数に対して、ほぼ最適2次高速化を達成する。
論文 参考訳(メタデータ) (2021-08-27T08:34:26Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Analysis and Design of Thompson Sampling for Stochastic Partial
Monitoring [91.22679787578438]
部分モニタリングのためのトンプソンサンプリングに基づく新しいアルゴリズムを提案する。
局所可観測性を持つ問題の線形化変種に対して,新たなアルゴリズムが対数問題依存の擬似回帰$mathrmO(log T)$を達成することを証明した。
論文 参考訳(メタデータ) (2020-06-17T05:48:33Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。