論文の概要: Decoder ensembling for learned latent geometries
- arxiv url: http://arxiv.org/abs/2408.07507v1
- Date: Wed, 14 Aug 2024 12:35:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:24:15.174689
- Title: Decoder ensembling for learned latent geometries
- Title(参考訳): 学習潜在測地のためのデコーダアンサンブル
- Authors: Stas Syrota, Pablo Moreno-Muñoz, Søren Hauberg,
- Abstract要約: 我々は、関連する予想多様体上の測地線を容易に計算する方法を示す。
このシンプルで信頼性が高く、簡単に使える潜在測地に一歩近づきます。
- 参考スコア(独自算出の注目度): 15.484595752241122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent space geometry provides a rigorous and empirically valuable framework for interacting with the latent variables of deep generative models. This approach reinterprets Euclidean latent spaces as Riemannian through a pull-back metric, allowing for a standard differential geometric analysis of the latent space. Unfortunately, data manifolds are generally compact and easily disconnected or filled with holes, suggesting a topological mismatch to the Euclidean latent space. The most established solution to this mismatch is to let uncertainty be a proxy for topology, but in neural network models, this is often realized through crude heuristics that lack principle and generally do not scale to high-dimensional representations. We propose using ensembles of decoders to capture model uncertainty and show how to easily compute geodesics on the associated expected manifold. Empirically, we find this simple and reliable, thereby coming one step closer to easy-to-use latent geometries.
- Abstract(参考訳): 潜時空間幾何学は、深部生成モデルの潜時変数と相互作用するための厳密で経験的に価値のある枠組みを提供する。
このアプローチは、ユークリッドラテント空間をプルバック計量を通してリーマン空間と解釈し、ラテント空間の標準的な微分幾何学的解析を可能にする。
残念なことに、データ多様体は一般にコンパクトであり、容易に解かれるか穴で満たされるので、ユークリッド潜在空間への位相的ミスマッチが示唆される。
このミスマッチの最も確立された解決策は、不確実性をトポロジーのプロキシにすることであるが、ニューラルネットワークモデルでは、原理に欠け、一般的に高次元表現にスケールしない粗いヒューリスティックによって実現されることが多い。
本稿では,デコーダのアンサンブルを用いてモデルの不確実性を捕捉し,それに伴う予測多様体上の測地線を容易に計算する方法を示す。
経験的には、この単純で信頼性があり、簡単に使える潜在測地へと一歩近づきます。
関連論文リスト
- Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
乱れのないデータから歪んだ表現を学習することは、機械学習における根本的な課題である。
本稿では,2次最適輸送に基づく非交叉表現学習手法を提案する。
提案手法の有効性を4つの標準ベンチマークで示す。
論文 参考訳(メタデータ) (2024-07-10T16:51:32Z) - Topological Obstructions and How to Avoid Them [22.45861345237023]
局所最適性は特異点や不正確な次数や巻数によって生じる可能性があることを示す。
本稿では,データポイントを幾何学空間上のマルチモーダル分布にマッピングするフローベースモデルを提案する。
論文 参考訳(メタデータ) (2023-12-12T18:56:14Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
非定常データストリームのデータ幾何を探索することにより,新しい視点から連続学習を研究する。
提案手法は,新しいデータによって引き起こされる幾何構造に対応するために,基底空間の幾何学を動的に拡張する。
実験により,本手法はユークリッド空間で設計したベースライン法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-04-08T06:35:25Z) - Topological Singularity Detection at Multiple Scales [11.396560798899413]
実世界のデータは、間違った発見につながる可能性のある異なる非次元構造を示す。
本研究では,局所固有次元を定量化し,複数の尺度に沿った点の「多様体性」を評価するためのユークリディシティスコアを得る枠組みを開発する。
本手法は複素空間の特異点を同定すると同時に,画像データの特異構造と局所的幾何学的複雑さを捉える。
論文 参考訳(メタデータ) (2022-09-30T20:00:32Z) - Towards Modeling and Resolving Singular Parameter Spaces using
Stratifolds [18.60761407945024]
学習力学において、特異点は学習軌道の引力として作用し、従ってモデルの収束速度に悪影響を及ぼす。
直交多様体を用いて特異点から生じる問題を回避するための一般的な手法を提案する。
経験的に、特異空間の代わりに滑らかな多様体近似に(自然な)勾配勾配を用いることで、魅力の振舞いを回避でき、学習における収束速度を向上できることを示す。
論文 参考訳(メタデータ) (2021-12-07T14:42:45Z) - Pulling back information geometry [3.0273878903284266]
我々は,幅広いデコーダ分布に対して有意義な潜在測地を実現できることを示す。
我々は,幅広いデコーダ分布に対して有意義な潜在測地を実現できることを示す。
論文 参考訳(メタデータ) (2021-06-09T20:16:28Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z) - Quadric hypersurface intersection for manifold learning in feature space [52.83976795260532]
適度な高次元と大きなデータセットに適した多様体学習技術。
この手法は、二次超曲面の交点という形で訓練データから学習される。
テスト時、この多様体は任意の新しい点に対する外れ値スコアを導入するのに使うことができる。
論文 参考訳(メタデータ) (2021-02-11T18:52:08Z) - Geometry-Aware Hamiltonian Variational Auto-Encoder [0.0]
変分自己エンコーダ(VAE)は、データよりもはるかに小さな次元空間にある潜在変数を抽出することにより、次元削減を行うのに適したツールであることが証明されている。
しかし、そのような生成モデルは、医学のような多くの現実の分野に豊富に存在する小さなデータセットで訓練すると、性能が低下する可能性がある。
このような潜在空間モデリングは、より意味のある、よりリアルなデータ生成、より信頼性の高いクラスタリングに繋がる基盤構造に関する有用な情報を提供する、と我々は主張する。
論文 参考訳(メタデータ) (2020-10-22T08:26:46Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。