論文の概要: Fold Bifurcation Identification through Scientific Machine Learning
- arxiv url: http://arxiv.org/abs/2312.14210v2
- Date: Thu, 30 Jan 2025 17:08:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:11:35.915444
- Title: Fold Bifurcation Identification through Scientific Machine Learning
- Title(参考訳): 科学機械学習によるフォルド分岐同定
- Authors: Giuseppe Habib, Ádám Horváth,
- Abstract要約: 本研究は,周期解の折りたたみ分岐近傍の過渡時間列を科学的機械学習を用いて同定する。
畳み込みニューラルネットワーク(CNN)は、比較的少量のデータと単一の非常に単純なシステムで訓練される。
CNNは、マス・オン・ムーブ・ベルトシステムのために、折り畳み付近の過渡軌道を正しく分類することができた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study employs scientific machine learning to identify transient time series of dynamical systems near a fold bifurcation of periodic solutions. The unique aspect of this work is that a convolutional neural network (CNN) is trained with a relatively small amount of data and on a single, very simple system, yet it is tested on much more complicated systems. This task requires strong generalization capabilities, which are achieved by incorporating physics-based information. This information is provided through a specific pre-processing of the input data, which includes transformation into polar coordinates, normalization, transformation into the logarithmic scale, and filtering through a moving mean. The results demonstrate that such data pre-processing enables the CNN to grasp the important features related to transient time-series near a fold bifurcation, namely, the trend of the oscillation amplitude, and disregard other characteristics that are not particularly relevant, such as the vibration frequency. The developed CNN was able to correctly classify transient trajectories near a fold for a mass-on-moving-belt system, a van der Pol-Duffing oscillator with an attached tuned mass damper, and a pitch-and-plunge wing profile. The results contribute to the progress towards the development of similar CNNs effective in real-life applications such as safety monitoring of dynamical systems.
- Abstract(参考訳): 本研究は,周期解の折りたたみ分岐近傍の過渡時間列を科学的機械学習を用いて同定する。
この研究のユニークな側面は、畳み込みニューラルネットワーク(CNN)が比較的少量のデータと単一の非常に単純なシステムで訓練されていることだが、より複雑なシステムでテストされている。
このタスクは、物理学に基づく情報を組み込んだ強力な一般化機能を必要とする。
この情報は、極座標への変換、正規化、対数スケールへの変換、移動平均によるフィルタリングを含む入力データの特定の前処理によって提供される。
これらのデータ前処理により、CNNは、過渡時系列に関連する重要な特徴、すなわち振動振幅の傾向を把握でき、振動周波数など、特に関係のない特徴を無視することができる。
開発されたCNNは、マス・オン・ムーブメント・ベルト・システム、ファン・デル・ポル・ダッフィング発振器、調整された質量減衰器、ピッチ・アンド・プルンゲ翼の形状を正確に分類することができた。
この結果は,動的システムの安全性監視などの現実的な応用に有効な類似CNNの開発に寄与する。
関連論文リスト
- Heterogeneous quantization regularizes spiking neural network activity [0.0]
本稿では、アナログデータを正規化し、スパイク位相表現に量子化する、データブラインドニューロモルフィック信号条件付け戦略を提案する。
我々は、量子化重みの範囲と密度が蓄積された入力統計に適応するデータ認識キャリブレーションステップを追加することで、このメカニズムを拡張した。
論文 参考訳(メタデータ) (2024-09-27T02:25:44Z) - Learning noise-induced transitions by multi-scaling reservoir computing [2.9170682727903863]
我々は、雑音による遷移を学習するために、リカレントニューラルネットワークの一種として貯水池コンピューティングという機械学習モデルを開発する。
トレーニングされたモデルは、遷移時間と遷移回数の正確な統計を生成する。
また、二重井戸ポテンシャルの非対称性、非詳細バランスによる回転力学、多安定系の遷移も認識している。
論文 参考訳(メタデータ) (2023-09-11T12:26:36Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Learning Flow Functions from Data with Applications to Nonlinear
Oscillators [0.0]
フロー関数の学習は離散時間力学系の入力状態マップの学習と等価であることを示す。
これにより、RNNをエンコーダとデコーダネットワークと共に使用し、システムの状態をRNNとバックの隠された状態にマッピングする。
論文 参考訳(メタデータ) (2023-03-29T13:04:04Z) - Neuronal architecture extracts statistical temporal patterns [1.9662978733004601]
情報表現や処理に高次時間的(コ-)ゆらぎをいかに利用できるかを示す。
単純な生物学的にインスパイアされたフィードフォワードニューロンモデルでは、時系列分類を行うために3階までの累積から情報を抽出することができる。
論文 参考訳(メタデータ) (2023-01-24T18:21:33Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
本稿では,時間変化システムを対象とした適応機械学習手法を提案する。
我々は,エンコーダデコーダCNNのエンコーダ部出力において,非常に高次元(N>100k)の入力を低次元(N2)潜在空間にマッピングする。
そこで本手法では,割り込みを伴わないフィードバックに基づいて,内部の相関関係を学習し,その進化をリアルタイムで追跡する。
論文 参考訳(メタデータ) (2021-07-13T16:05:28Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
本稿では,ディープエンコーダ・デコーダ方式cnnの低次元潜在空間の適応チューニング法を提案する。
粒子加速器における時間変動荷電粒子ビームの特性を予測するためのアプローチを実証する。
論文 参考訳(メタデータ) (2021-05-08T03:50:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。