Neural quantum kernels: training quantum kernels with quantum neural networks
- URL: http://arxiv.org/abs/2401.04642v2
- Date: Wed, 05 Mar 2025 09:44:40 GMT
- Title: Neural quantum kernels: training quantum kernels with quantum neural networks
- Authors: Pablo Rodriguez-Grasa, Yue Ban, Mikel Sanz,
- Abstract summary: We propose using the training of a quantum neural network to construct neural quantum kernels.<n>We present several strategies for constructing neural quantum kernels and propose a scalable method to train an $n$-qubit data re-uploading quantum neural network (QNN)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum and classical machine learning have been naturally connected through kernel methods, which have also served as proof-of-concept for quantum advantage. Quantum embeddings encode classical data into quantum feature states, enabling the construction of embedding quantum kernels (EQKs) by measuring vector similarities and projected quantum kernels (PQKs) through projections of these states. However, in both approaches, the model is influenced by the choice of the embedding. In this work, we propose using the training of a quantum neural network (QNN) to construct neural quantum kernels: both neural EQKs and neural PQKs, which are problem-inspired kernels. Unlike previous methods in the literature, our approach requires the kernel matrix to be constructed only once. We present several strategies for constructing neural quantum kernels and propose a scalable method to train an $n$-qubit data re-uploading quantum neural network (QNN). We provide numerical evidence of the performance of these models under noisy conditions. Additionally, we demonstrate how neural quantum kernels can alleviate exponential concentration and enhance generalization capabilities compared to problem-agnostic kernels, positioning them as a scalable and robust solution for quantum machine learning applications.
Related papers
- Natural Quantization of Neural Networks [0.0]
We propose a natural quantization of a standard neural network, where the neurons correspond to qubits and the activation functions are implemented via quantum gates and measurements.
We benchmark this architecture on a subset of the standard MNIST dataset and find a regime of "quantum advantage"
The proposed quantum neural networks are readily realizable in present-day quantum computers on commercial datasets.
arXiv Detail & Related papers (2025-03-19T17:57:11Z) - Satellite image classification with neural quantum kernels [0.0699049312989311]
We use quantum kernels to classify images which include solar panels.
In the latter, we iteratively train an $n$-qubit QNN to ensure scalability, using the resultant architecture to directly form an $n$-qubit EQK.
Results are robust against a suboptimal training of the QNN.
arXiv Detail & Related papers (2024-09-30T14:52:00Z) - A Quantum Leaky Integrate-and-Fire Spiking Neuron and Network [0.0]
We introduce a new software model for quantum neuromorphic computing.
We use these neurons as building blocks in the construction of a quantum spiking neural network (QSNN) and a quantum spiking convolutional neural network (QSCNN)
arXiv Detail & Related papers (2024-07-23T11:38:06Z) - Evaluating the Convergence Limit of Quantum Neural Tangent Kernel [0.0]
We construct the kernel for two models, Quantun Ensemble and Quantum Neural Network, and show the convergence of these models in the limit of infinitely many qubits.
arXiv Detail & Related papers (2023-12-05T03:04:26Z) - Projected Stochastic Gradient Descent with Quantum Annealed Binary Gradients [51.82488018573326]
We present QP-SBGD, a novel layer-wise optimiser tailored towards training neural networks with binary weights.
BNNs reduce the computational requirements and energy consumption of deep learning models with minimal loss in accuracy.
Our algorithm is implemented layer-wise, making it suitable to train larger networks on resource-limited quantum hardware.
arXiv Detail & Related papers (2023-10-23T17:32:38Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Quantum Methods for Neural Networks and Application to Medical Image
Classification [5.817995726696436]
We introduce two new quantum methods for neural networks.
The first is a quantum orthogonal neural network, which is based on a quantum pyramidal circuit.
The second method is quantum-assisted neural networks, where a quantum computer is used to perform inner product estimation.
arXiv Detail & Related papers (2022-12-14T18:17:19Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - On-chip QNN: Towards Efficient On-Chip Training of Quantum Neural
Networks [21.833693982056896]
We present On-chip QNN, the first experimental demonstration of practical on-chip QNN training with parameter shift.
We propose probabilistic gradient pruning to firstly identify gradients with potentially large errors and then remove them.
The results demonstrate that our on-chip training achieves over 90% and 60% accuracy for 2-class and 4-class image classification tasks.
arXiv Detail & Related papers (2022-02-26T22:27:36Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - A Quantum Convolutional Neural Network on NISQ Devices [0.9831489366502298]
We propose a quantum convolutional neural network inspired by convolutional neural networks.
Our model is robust to certain noise for image recognition tasks.
It opens up the prospect of exploiting quantum power to process information in the era of big data.
arXiv Detail & Related papers (2021-04-14T15:07:03Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit [0.0]
We introduce a hybrid model combining the quantum-inspired tensor networks (TN) and the variational quantum circuits (VQC) to perform supervised learning tasks.
We show that a matrix product state based TN with low bond dimensions performs better than PCA as a feature extractor to compress data for the input of VQCs in the binary classification of MNIST dataset.
arXiv Detail & Related papers (2020-11-30T09:43:59Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.