論文の概要: Human Delegation Behavior in Human-AI Collaboration: The Effect of Contextual Information
- arxiv url: http://arxiv.org/abs/2401.04729v2
- Date: Wed, 08 Jan 2025 14:22:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:52:55.358069
- Title: Human Delegation Behavior in Human-AI Collaboration: The Effect of Contextual Information
- Title(参考訳): ヒューマンAIコラボレーションにおけるヒューマンデリゲーション行動:文脈情報の影響
- Authors: Philipp Spitzer, Joshua Holstein, Patrick Hemmer, Michael Vössing, Niklas Kühl, Dominik Martin, Gerhard Satzger,
- Abstract要約: 既存の補完機能を活用するための有望なアプローチの1つは、人間が個々の決定タスクのインスタンスをAIに委譲できるようにすることである。
我々は,この委任決定を支援するための文脈情報の提供の効果を検討するために行動学的研究を行う。
これらの結果から,コンテキスト情報へのアクセスは,デリゲート設定における人間-AIチームのパフォーマンスを著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 7.475784495279183
- License:
- Abstract: The integration of artificial intelligence (AI) into human decision-making processes at the workplace presents both opportunities and challenges. One promising approach to leverage existing complementary capabilities is allowing humans to delegate individual instances of decision tasks to AI. However, enabling humans to delegate instances effectively requires them to assess several factors. One key factor is the analysis of both their own capabilities and those of the AI in the context of the given task. In this work, we conduct a behavioral study to explore the effects of providing contextual information to support this delegation decision. Specifically, we investigate how contextual information about the AI and the task domain influence humans' delegation decisions to an AI and their impact on the human-AI team performance. Our findings reveal that access to contextual information significantly improves human-AI team performance in delegation settings. Finally, we show that the delegation behavior changes with the different types of contextual information. Overall, this research advances the understanding of computer-supported, collaborative work and provides actionable insights for designing more effective collaborative systems.
- Abstract(参考訳): 職場における人間の意思決定プロセスへの人工知能(AI)の統合は、機会と課題の両方を提示している。
既存の補完機能を活用するための有望なアプローチの1つは、人間が個々の決定タスクのインスタンスをAIに委譲できるようにすることである。
しかしながら、人間がインスタンスを委譲できるようにするには、いくつかの要因を効果的に評価する必要がある。
重要な要素の1つは、与えられたタスクのコンテキストにおいて、自身の能力とAIの両方の分析である。
本研究では,この委任決定を支援するための文脈情報の提供の効果について,行動学的研究を行う。
具体的には、AIとタスク領域に関するコンテキスト情報が、AIに対する人間の委譲決定とその人間-AIチームのパフォーマンスに与える影響について検討する。
これらの結果から,コンテキスト情報へのアクセスは,デリゲート設定における人間-AIチームのパフォーマンスを著しく向上させることがわかった。
最後に,異なる種類の文脈情報を用いてデリゲート行動が変化することを示す。
全体として、この研究はコンピュータ支援された協調作業の理解を深め、より効果的な協調システムを設計するための実用的な洞察を提供する。
関連論文リスト
- The Value of Information in Human-AI Decision-making [23.353778024330165]
情報の価値を特徴付けるための決定論的枠組みを提供する。
本稿では,新しい情報に基づくインスタンスレベルの説明手法を提案する。
論文 参考訳(メタデータ) (2025-02-10T04:50:42Z) - Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks [45.23431596135002]
本研究は,古典的対パートナー意識による説明が学習作業中の人間の行動とパフォーマンスに与える影響を比較検討した。
その結果, パートナー意識による説明は, 関係する人工エージェントの種類によって, 参加者に異なる影響を及ぼした。
論文 参考訳(メタデータ) (2024-11-15T13:22:04Z) - Unexploited Information Value in Human-AI Collaboration [23.353778024330165]
ヒューマンAIチームのパフォーマンスを改善する方法は、各エージェントがどのような情報や戦略を採用しているかを知らなければ、しばしば明確ではない。
本稿では,人間とAIの協調関係を分析するための統計的決定理論に基づくモデルを提案する。
論文 参考訳(メタデータ) (2024-11-03T01:34:45Z) - Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
AIによる意思決定において、人間はしばしばAIの提案を受動的にレビューし、それを受け入れるか拒否するかを決定する。
意思決定における人間-AIの意見の対立に関する議論と人間のリフレクションを促進する新しい枠組みであるHuman-AI Deliberationを提案する。
人間の熟考の理論に基づいて、この枠組みは人間とAIを次元レベルの意見の引用、熟考的議論、意思決定の更新に携わる。
論文 参考訳(メタデータ) (2024-03-25T14:34:06Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
Recommender、Analyzer、Devil's Advocateの3つのAIの役割について検討する。
以上の結果から,各役割のタスクパフォーマンス,信頼性の適切性,ユーザエクスペリエンスにおける長所と短所が明らかとなった。
これらの洞察は、異なる状況に応じて適応的な機能的役割を持つAIアシスタントを設計する上で、貴重な意味を提供する。
論文 参考訳(メタデータ) (2024-03-04T07:32:28Z) - The Impact of Imperfect XAI on Human-AI Decision-Making [8.305869611846775]
鳥種識別作業において,誤った説明が人間の意思決定行動にどのように影響するかを評価する。
この結果から,AIと人間-AIチームパフォーマンスへの不完全なXAIと,人間の専門知識レベルの影響が明らかになった。
論文 参考訳(メタデータ) (2023-07-25T15:19:36Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
我々は、人間とAIのコラボレーションは対話的であり、人間がAIエージェントの作業を監視し、エージェントが理解し活用できるフィードバックを提供するべきだと論じている。
本研究では, IGLUコンペティションによって定義された課題である, マイニングクラフトのような世界における対話型言語理解タスクを用いて, これらの方向を探索する。
論文 参考訳(メタデータ) (2023-04-21T05:37:59Z) - Human-AI Collaboration: The Effect of AI Delegation on Human Task
Performance and Task Satisfaction [0.0]
タスク性能とタスク満足度はAIデリゲートによって向上することを示す。
我々は、これらの改善の基盤となるメカニズムとして、人間による自己効力の増大を見いだした。
我々の発見は、AIモデルがより多くの管理責任を引き継ぐことが、人間とAIのコラボレーションの効果的な形態であることを示す最初の証拠を提供する。
論文 参考訳(メタデータ) (2023-03-16T11:02:46Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
ビッグデータ技術と人工知能(AI)応用の爆発的な成長は、情報ファセットの普及に繋がった。
等角性や正確性などの情報フェートは、情報に対する人間の認識を支配的かつ著しく左右する。
認知の限界を克服するために情報表現を適応できる人工知能技術が必要であることを示唆する。
論文 参考訳(メタデータ) (2022-04-25T02:47:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。