論文の概要: RIDGE: Reproducibility, Integrity, Dependability, Generalizability, and Efficiency Assessment of Medical Image Segmentation Models
- arxiv url: http://arxiv.org/abs/2401.08847v2
- Date: Wed, 3 Jul 2024 07:57:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 20:13:45.345985
- Title: RIDGE: Reproducibility, Integrity, Dependability, Generalizability, and Efficiency Assessment of Medical Image Segmentation Models
- Title(参考訳): RIDGE:医療画像分割モデルの再現性、統合性、依存性、一般化性および効率評価
- Authors: Farhad Maleki, Linda Moy, Reza Forghani, Tapotosh Ghosh, Katie Ovens, Steve Langer, Pouria Rouzrokh, Bardia Khosravi, Ali Ganjizadeh, Daniel Warren, Roxana Daneshjou, Mana Moassefi, Atlas Haddadi Avval, Susan Sotardi, Neil Tenenholtz, Felipe Kitamura, Timothy Kline,
- Abstract要約: 本稿では, 深層学習に基づく医用画像分割モデルの再現性, 統合性, 依存性, 一般化性, 効率性を評価するための RIDGE チェックリストを提案する。
RIDGEチェックリストは単なる評価ツールではなく、研究の質と透明性の向上を目指す研究者のためのガイドラインでもある。
- 参考スコア(独自算出の注目度): 1.4675465116143782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning techniques hold immense promise for advancing medical image analysis, particularly in tasks like image segmentation, where precise annotation of regions or volumes of interest within medical images is crucial but manually laborious and prone to interobserver and intraobserver biases. As such, deep learning approaches could provide automated solutions for such applications. However, the potential of these techniques is often undermined by challenges in reproducibility and generalizability, which are key barriers to their clinical adoption. This paper introduces the RIDGE checklist, a comprehensive framework designed to assess the Reproducibility, Integrity, Dependability, Generalizability, and Efficiency of deep learning-based medical image segmentation models. The RIDGE checklist is not just a tool for evaluation but also a guideline for researchers striving to improve the quality and transparency of their work. By adhering to the principles outlined in the RIDGE checklist, researchers can ensure that their developed segmentation models are robust, scientifically valid, and applicable in a clinical setting.
- Abstract(参考訳): 深層学習技術は、特に画像セグメンテーションのようなタスクにおいて、医用画像内の領域や関心のボリュームの正確なアノテーションが不可欠であるが、手動で努力し、サーバー間のバイアスやオブザーバ内のバイアスが生じる。
このように、ディープラーニングアプローチは、そのようなアプリケーションに自動化されたソリューションを提供することができる。
しかし、これらの技術の可能性はしばしば再現性と一般化性の課題によって損なわれ、それが臨床導入の鍵となる。
本稿では, 深層学習に基づく医用画像セグメンテーションモデルの再現性, 統合性, 依存性, 一般化性, 効率性を評価するための総合的なフレームワークであるRIDGEチェックリストを紹介する。
RIDGEチェックリストは単なる評価ツールではなく、研究の質と透明性の向上を目指す研究者のためのガイドラインでもある。
RIDGEチェックリストに概説された原則に従うことで、研究者は、開発したセグメンテーションモデルが堅牢で、科学的に有効であり、臨床環境で適用可能であることを保証できる。
関連論文リスト
- Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIAは医用画像解析のための信頼できるディープラーニングフレームワークである。
新型コロナウイルス(COVID-19)などの公衆衛生危機への対応に深層学習の活用を推進していくため、研究者や臨床医を支援することが期待されている。
論文 参考訳(メタデータ) (2022-12-06T05:30:22Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
論文 参考訳(メタデータ) (2022-11-03T15:19:59Z) - Towards Trustworthy Healthcare AI: Attention-Based Feature Learning for
COVID-19 Screening With Chest Radiography [70.37371604119826]
信頼性を備えたAIモデルの構築は、特に医療などの規制領域において重要である。
これまでの研究では、畳み込みニューラルネットワークをバックボーンアーキテクチャとして使用していた。
本稿では,視覚変換器を用いた特徴学習手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T14:55:42Z) - In-Bed Human Pose Estimation from Unseen and Privacy-Preserving Image
Domains [22.92165116962952]
ベッド内の人間の姿勢推定は、医療状況の評価において潜在的な価値を持つ重要な健康関連指標を提供する。
本稿では,マルチモーダル条件変分オートエンコーダ(MC-VAE)を提案する。
本研究は, 身体位置が利用可能なモダリティから効果的に認識できることを示し, ベースラインモデルと同等の結果が得られることを示した。
論文 参考訳(メタデータ) (2021-11-30T04:56:16Z) - Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI [0.6117371161379209]
様々な深層学習技術の採用は、非常に一般的かつ効果的であり、網膜光コヒーレンス・トモグラフィー分野に実装する上でも同様に真実である。
これらの技術はブラックボックスの特徴を持ち、医療従事者がそれらの成果を完全に信頼できないようにする。
本稿では,この研究に説明可能なAIを導入したLimeの使用とともに,比較的小型で簡易な自己開発CNNモデルを提案する。
論文 参考訳(メタデータ) (2021-11-06T13:54:07Z) - Evaluation of Complexity Measures for Deep Learning Generalization in
Medical Image Analysis [77.34726150561087]
PAC-ベイズ平坦度とパスノルムに基づく測度は、モデルとデータの組み合わせについて最も一貫した説明をもたらす。
また,乳房画像に対するマルチタスク分類とセグメンテーションのアプローチについても検討した。
論文 参考訳(メタデータ) (2021-03-04T20:58:22Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
大量の注釈付きトレーニング画像を用いることなく、正確な解剖学的構造セグメンテーションを作成できる方法は、非常に望ましい。
本研究では,自然に組み込まれたループ機構を備えたワンショット解剖セグメントであるContour Transformer Network (CTN)を提案する。
筆者らのワンショット学習法は,非学習に基づく手法を著しく上回り,最先端の完全教師付きディープラーニングアプローチと競争的に機能することを示した。
論文 参考訳(メタデータ) (2020-07-06T20:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。