論文の概要: Intelligent Condition Monitoring of Industrial Plants: An Overview of Methodologies and Uncertainty Management Strategies
- arxiv url: http://arxiv.org/abs/2401.10266v3
- Date: Fri, 22 Aug 2025 18:41:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 14:31:50.293623
- Title: Intelligent Condition Monitoring of Industrial Plants: An Overview of Methodologies and Uncertainty Management Strategies
- Title(参考訳): 工場のインテリジェント・コンディションモニタリング:方法論と不確実性管理戦略の概観
- Authors: Maryam Ahang, Todd Charter, Mostafa Abbasi, Maziyar Khadivi, Oluwaseyi Ogunfowora, Homayoun Najjaran,
- Abstract要約: 現代の産業システムの安全性、信頼性、効率を確保するためには、条件監視が不可欠である。
産業プロセスの複雑さが増すにつれ、人工知能(AI)は断層検出と診断の強力なツールとして登場してきた。
State-of-the-art Machine Learning (ML)とDeep Learning (DL)アルゴリズムをレビューし、その強み、限界、産業的故障の検出と診断への適用性を強調した。
- 参考スコア(独自算出の注目度): 4.270144986042909
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Condition monitoring is essential for ensuring the safety, reliability, and efficiency of modern industrial systems. With the increasing complexity of industrial processes, artificial intelligence (AI) has emerged as a powerful tool for fault detection and diagnosis, attracting growing interest from both academia and industry. This paper provides a comprehensive overview of intelligent condition monitoring methods, with a particular emphasis on chemical plants and the widely used Tennessee Eastman Process (TEP) benchmark. State-of-the-art machine learning (ML) and deep learning (DL) algorithms are reviewed, highlighting their strengths, limitations, and applicability to industrial fault detection and diagnosis. Special attention is given to key challenges, including imbalanced and unlabeled data, and to strategies by which models can address these issues. Furthermore, comparative analyses of algorithm performance are presented to guide method selection in practical scenarios. This survey is intended to benefit both newcomers and experienced researchers by consolidating fundamental concepts, summarizing recent advances, and outlining open challenges and promising directions for intelligent condition monitoring in industrial plants.
- Abstract(参考訳): 現代の産業システムの安全性、信頼性、効率を確保するためには、条件監視が不可欠である。
産業プロセスの複雑さの増大に伴い、人工知能(AI)は障害の検出と診断の強力なツールとして登場し、学術と産業の両方から関心が高まりつつある。
本稿では、化学プラントと広く使用されているテネシー・イーストマン・プロセス(TEP)ベンチマークに重点を置いて、インテリジェントな状態監視手法の概要を概説する。
State-of-the-art Machine Learning (ML)とDeep Learning (DL)アルゴリズムをレビューし、その強み、限界、産業的故障の検出と診断への適用性を強調した。
不均衡なデータやラベルのないデータを含む重要な課題や、モデルがこれらの問題に対処できる戦略に特に注意が払われる。
さらに,実践シナリオにおける指導手法の選択について,アルゴリズム性能の比較分析を行った。
この調査は、先進的な概念の統合、最近の進歩の要約、オープンな課題の概要、産業プラントにおけるインテリジェントな状態監視の有望な方向性などによって、新参者や経験者の双方に利益をもたらすことを意図している。
関連論文リスト
- MID-INFRARED (MIR) OCT-based inspection in industry [32.33406552316584]
本稿では,中赤外(MIR)光コヒーレンス・トモグラフィー(OCT)システムについて,異なる物質を透過し,地中不規則を検出するツールとして評価することを目的とする。
論文 参考訳(メタデータ) (2025-07-01T11:25:42Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
AI生成メディアを検出する方法は急速に進化してきた。
MLLMに基づく汎用検出器は、信頼性検証、説明可能性、ローカライゼーション機能を統合する。
倫理的・セキュリティ的な配慮が、重要な世界的な懸念として浮上している。
論文 参考訳(メタデータ) (2025-02-07T12:18:20Z) - Anomaly Detection for Industrial Applications, Its Challenges, Solutions, and Future Directions: A Review [4.139740414165092]
カメラセンサを用いた画像からの異常検出は、産業レベルでの主流の応用の1つである。
従来の異常検出ワークフローは、人間の操作者による手動検査に基づいている。
最近のビジョンベースのアプローチは、コンピュータビジョンを使用して機能を自動的に抽出し、処理し、解釈することができる。
論文 参考訳(メタデータ) (2025-01-20T07:24:39Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - A Review of Physics-Informed Machine Learning Methods with Applications
to Condition Monitoring and Anomaly Detection [1.124958340749622]
PIMLは、既知の物理法則と制約を機械学習アルゴリズムに組み込んだものである。
本研究では,条件モニタリングの文脈におけるPIML技術の概要を概観する。
論文 参考訳(メタデータ) (2024-01-22T11:29:44Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Anomaly Detection in Industrial Machinery using IoT Devices and Machine
Learning: a Systematic Mapping [0.0]
IoT(Internet of Things)は、産業機械から大量のデータを収集することを可能にする。
しかし、モノのインターネットによって生成されるデータの量と複雑さは、人間が手動で異常を検出するのを困難にしている。
機械学習(ML)アルゴリズムは、生成されたデータを分析することによって、産業機械における異常検出を自動化することができる。
論文 参考訳(メタデータ) (2023-07-28T20:58:00Z) - A Survey on Unsupervised Anomaly Detection Algorithms for Industrial
Images [2.4976719861186845]
産業4.0の発展に伴い、表面欠陥検出・異常検出が産業分野の話題となっている。
教師なし学習は、上記の視覚的産業異常検出の欠点に対処する大きな可能性を持っている。
論文 参考訳(メタデータ) (2022-04-24T01:38:18Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Technical Language Supervision for Intelligent Fault Diagnosis in
Process Industry [1.8574771508622119]
プロセス産業では,人的専門家を支援する自動故障診断手法による状態監視システムにより,メンテナンス効率,プロセス持続可能性,職場の安全が向上する。
インテリジェント障害診断(IFD)における大きな課題は、モデルのトレーニングと検証に必要なラベルの正確なデータセットを開発することである。
産業データセットにおける技術的言語アノテーションとしての、障害特性と重大性差別に関するドメイン固有知識。
これにより、産業データに基づくIFDシステムのための技術言語監視(TLS)ソリューションを開発する機会が生まれる。
論文 参考訳(メタデータ) (2021-12-11T18:59:40Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
異常検出は、期待される振る舞いから著しく逸脱するデータパターンを特定することに関わる。
データ分析からe-health、サイバーセキュリティ、予測メンテナンス、障害防止、産業自動化に至るまで、幅広いアプリケーション領域があるため、これは重要な研究課題である。
本稿では,センサシステムの特定の領域における異常検出に使用される最先端手法について概説する。
論文 参考訳(メタデータ) (2020-10-27T09:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。