Efficient Dynamic-NeRF Based Volumetric Video Coding with Rate Distortion Optimization
- URL: http://arxiv.org/abs/2402.01380v2
- Date: Fri, 08 Nov 2024 03:05:11 GMT
- Title: Efficient Dynamic-NeRF Based Volumetric Video Coding with Rate Distortion Optimization
- Authors: Zhiyu Zhang, Guo Lu, Huanxiong Liang, Anni Tang, Qiang Hu, Li Song,
- Abstract summary: NeRF has remarkable potential in volumetric video compression thanks to its simple representation and powerful 3D modeling capabilities.
ReRF separates the modeling from compression process, resulting in suboptimal compression efficiency.
In this paper, we propose a volumetric video compression method based on dynamic NeRF in a more compact manner.
- Score: 19.90293875755272
- License:
- Abstract: Volumetric videos, benefiting from immersive 3D realism and interactivity, hold vast potential for various applications, while the tremendous data volume poses significant challenges for compression. Recently, NeRF has demonstrated remarkable potential in volumetric video compression thanks to its simple representation and powerful 3D modeling capabilities, where a notable work is ReRF. However, ReRF separates the modeling from compression process, resulting in suboptimal compression efficiency. In contrast, in this paper, we propose a volumetric video compression method based on dynamic NeRF in a more compact manner. Specifically, we decompose the NeRF representation into the coefficient fields and the basis fields, incrementally updating the basis fields in the temporal domain to achieve dynamic modeling. Additionally, we perform end-to-end joint optimization on the modeling and compression process to further improve the compression efficiency. Extensive experiments demonstrate that our method achieves higher compression efficiency compared to ReRF on various datasets.
Related papers
- Rate-aware Compression for NeRF-based Volumetric Video [21.372568857027748]
radiance fields (NeRF) have advanced the development of 3D volumetric video technology.
Existing solutions compress NeRF representations after the training stage, leading to a separation between representation training and compression.
In this paper, we try to directly learn a compact NeRF representation for volumetric video in the training stage based on the proposed rate-aware compression framework.
arXiv Detail & Related papers (2024-11-08T04:29:14Z) - Neural NeRF Compression [19.853882143024]
Recent NeRFs utilize feature grids to improve rendering quality and speed.
These representations introduce significant storage overhead.
This paper presents a novel method for efficiently compressing a grid-based NeRF model.
arXiv Detail & Related papers (2024-06-13T09:12:26Z) - JointRF: End-to-End Joint Optimization for Dynamic Neural Radiance Field Representation and Compression [39.403294185116]
We propose a novel end-to-end joint optimization scheme of dynamic NeRF representation and compression, called JointRF.
JointRF achieves significantly improved quality and compression efficiency against the previous methods.
arXiv Detail & Related papers (2024-05-23T11:32:46Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - SPC-NeRF: Spatial Predictive Compression for Voxel Based Radiance Field [41.33347056627581]
We propose SPC-NeRF, a novel framework applying spatial predictive coding in EVG compression.
Our method can achieve 32% bit saving compared to the state-of-the-art method VQRF.
arXiv Detail & Related papers (2024-02-26T07:40:45Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Learning True Rate-Distortion-Optimization for End-To-End Image
Compression [59.816251613869376]
Rate-distortion optimization is crucial part of traditional image and video compression.
In this paper, we enhance the training by introducing low-complexity estimations of the RDO result into the training.
We achieve average rate savings of 19.6% in MS-SSIM over the previous RDONet model, which equals rate savings of 27.3% over a comparable conventional deep image coder.
arXiv Detail & Related papers (2022-01-05T13:02:00Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - COMISR: Compression-Informed Video Super-Resolution [76.94152284740858]
Most videos on the web or mobile devices are compressed, and the compression can be severe when the bandwidth is limited.
We propose a new compression-informed video super-resolution model to restore high-resolution content without introducing artifacts caused by compression.
arXiv Detail & Related papers (2021-05-04T01:24:44Z) - Slimmable Compressive Autoencoders for Practical Neural Image
Compression [20.715312224456138]
We propose slimmable compressive autoencoders (SlimCAEs) for practical image compression.
SlimCAEs are highly flexible models that provide excellent rate-distortion performance, variable rate, and dynamic adjustment of memory, computational cost and latency.
arXiv Detail & Related papers (2021-03-29T16:12:04Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
We propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks.
In particular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost.
We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy.
arXiv Detail & Related papers (2020-02-10T10:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.