論文の概要: Quantum Normalizing Flows for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2402.02866v2
- Date: Fri, 19 Apr 2024 15:12:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 19:37:46.204330
- Title: Quantum Normalizing Flows for Anomaly Detection
- Title(参考訳): 異常検出のための量子正規化フロー
- Authors: Bodo Rosenhahn, Christoph Hirche,
- Abstract要約: 量子アーキテクチャのための正規化フローを導入し、そのようなフローをモデル化し最適化する方法を説明し、サンプルデータセット上でメソッドを評価する。
提案モデルでは,従来の手法と比較して,異常検出の競合性能を示す。
実験では, 森林の隔離, 局所降水率 (LOF) , 単一クラスSVMとの比較を行った。
- 参考スコア(独自算出の注目度): 23.262276593120305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Normalizing Flow computes a bijective mapping from an arbitrary distribution to a predefined (e.g. normal) distribution. Such a flow can be used to address different tasks, e.g. anomaly detection, once such a mapping has been learned. In this work we introduce Normalizing Flows for Quantum architectures, describe how to model and optimize such a flow and evaluate our method on example datasets. Our proposed models show competitive performance for anomaly detection compared to classical methods, esp. those ones where there are already quantum inspired algorithms available. In the experiments we compare our performance to isolation forests (IF), the local outlier factor (LOF) or single-class SVMs.
- Abstract(参考訳): 正規化フローは、任意の分布から予め定義された(例えば正規化)分布への単射写像を計算する。
このようなフローは、例えば異常検出のように、そのようなマッピングが学習されると、異なるタスクに対処するために使用することができる。
本稿では、量子アーキテクチャのための正規化フローを紹介し、そのようなフローをモデル化し、最適化する方法を説明し、サンプルデータセット上でメソッドを評価する。
提案モデルでは,すでに量子インスパイアされたアルゴリズムが存在するような古典的手法と比較して,異常検出の競合性能を示す。
実験では, 森林の隔離, 局所降水率 (LOF) , 単一クラスSVMとの比較を行った。
関連論文リスト
- Stochastic Sampling from Deterministic Flow Models [8.849981177332594]
そこで本論文では,フローモデルを同じ境界分布を持つ微分方程式の族(SDE)に変換する手法を提案する。
我々は,おもちゃのガウスセットアップと大規模イメージネット生成タスクにおいて,提案手法の利点を実証的に実証した。
論文 参考訳(メタデータ) (2024-10-03T05:18:28Z) - VQ-Flow: Taming Normalizing Flows for Multi-Class Anomaly Detection via Hierarchical Vector Quantization [101.41553763861381]
本稿では,マルチクラス異常検出における流れの正規化の可能性について検討する。
我々はフローモデルに、教師なしの方法で複数のクラス正規データの異なる概念を区別する権限を与え、結果としてVQ-Flowという新しいフローベース統一手法が生み出された。
提案されたVQ-Flowは、統合トレーニングスキーム内でのマルチクラスの異常検出の最先端を推し進め、MVTec ADで99.5%/98.3%のAUROCが得られる。
論文 参考訳(メタデータ) (2024-09-02T05:01:41Z) - Detecting and Mitigating Mode-Collapse for Flow-based Sampling of
Lattice Field Theories [6.222204646855336]
格子場理論の文脈における正規化流れのモード崩壊の結果について検討する。
本稿では,モード崩壊の度合いを定量化し,その結果の偏りを導出する指標を提案する。
論文 参考訳(メタデータ) (2023-02-27T19:00:22Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
データ多様体上の「チャートマップ」として局所正規化フローの混合を学習するための新しい統計フレームワークを導入する。
本フレームワークは, 正規化フローのシグネチャ特性を保ちながら, 最近の手法の表現性を向上し, 正確な密度評価を行う。
論文 参考訳(メタデータ) (2022-03-22T09:22:18Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Resampling Base Distributions of Normalizing Flows [0.0]
学習された拒絶サンプリングに基づいて,フローを正規化するためのベース分布を導入する。
ログライクリフの最大化と逆Kulback-Leibler分散の最適化の両方を用いて、適切な学習アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-10-29T14:44:44Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。